Reviews

DNA oxidation-based analysis: A new approach to assessing the relationship between nutrition and cancer

Abstract

 Background:DNA oxidation is one of the essential destructive effects of reactive oxygen species (ROS) on the cell membrane macromolecules leading to the deformation of cellular DNA. The most abundant oxidative DNA product on which most studies have focused is re-oxidized DNA, 8 oxo-deoxyguanosine (8-oxodG). This deformation of cellular DNA is associated with various cancer initiation and progression. DNA damage can be a cancer marker including 8-oxodG, thymidine glycol, 8-oxoadenine, etc. DNA oxidation is affected by environmental and non-environmental factors. Age, diet, and metabolism are at the heart of this process. This review study summarizes the types of cancer-related DNA oxidation that serve as a cancer biomarker. Also we will look at the factors influencing their formation.
1. Moradi, S., M.K. Kelarijani, and V. Shokri, Prostate cancer as a multifactorial disorder: an overview of the different sides of disease. Central Asian Journal of Medical and Pharmaceutical Sciences Innova¬tion, 2021. 1(3): p. 134-150.
2. Geng, Q.-S., et al., Precise medication for tumor patients in the context of mental stress. Cell Trans¬plantation, 2021. 30: p. 09636897211049813.
3. Kuczler, M.D., et al., ROS-induced cell cycle arrest as a mechanism of resistance in polyaneuploid can¬cer cells (PACCs). Progress in Biophysics and Mo¬lecular Biology, 2021.
4. Strasser, A. and D.L. Vaux, Cell death in the ori¬gin and treatment of cancer. Molecular Cell, 2020. 78(6): p. 1045-1054.
5. Denisenko, T.V., I.N. Budkevich, and B. Zhivotovsky, Cell death-based treatment of lung adenocarcino¬ma. Cell death & disease, 2018. 9(2): p. 1-14.
6. Lei, H. and K. Tao, Somatic mutations in colorectal cancer are associated with the epigenetic modifica¬tions. Journal of cellular and molecular medicine, 2020. 24(20): p. 11828-11836.
7. Al-Gubory, K.H., P.A. Fowler, and C. Garrel, The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. The international journal of biochemistry & cell biology, 2010. 42(10): p. 1634-1650.
8. Scherz-Shouval, R. and Z. Elazar, ROS, mitochon¬dria and the regulation of autophagy. Trends in cell biology, 2007. 17(9): p. 422-427.
9. Diebold, L. and N.S. Chandel, Mitochondrial ROS regulation of proliferating cells. Free Radical Biolo¬gy and Medicine, 2016. 100: p. 86-93.
10. Ziech, D., et al., Reactive Oxygen Species (ROS)––In¬duced genetic and epigenetic alterations in human carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 2011. 711(1-2): p. 167-173.
11. Zuo, L., et al., Biological and physiological role of reactive oxygen species–the good, the bad and the ugly. Acta physiologica, 2015. 214(3): p. 329-348.
12. Srinivas, U.S., et al., ROS and the DNA damage re¬sponse in cancer. Redox Biol, 2019. 25: p. 101084.
13. Gill, J.G., E. Piskounova, and S.J. Morrison, Cancer, Oxidative Stress, and Metastasis. Cold Spring Harb Symp Quant Biol, 2016. 81: p. 163-175.
14. Shafiei, G., et al., l-carnitine reduces the adverse ef¬fects of ROS and up-regulates the expression of im¬plantation related genes in in vitro developed mouse embryos. Theriogenology, 2020. 145: p. 59-66.
15. Moloney, J.N. and T.G. Cotter, ROS signalling in the biology of cancer. Semin Cell Dev Biol, 2018. 80: p. 50-64.
16. Griffiths, L.M., et al., Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevi¬siae. Methods Mol Biol, 2009. 554: p. 267-86.
17. Valavanidis, A., T. Vlachogianni, and C. Fiotakis, 8-hydroxy-2’ -deoxyguanosine (8-OHdG): A critical biomarker of oxidative stress and carcinogenesis. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2009. 27(2): p. 120-39.
18. Ames, B.N., Endogenous DNA damage as related to cancer and aging. Mutat Res, 1989. 214(1): p. 41-6.
19. Juan, C.A., et al., The Chemistry of Reactive Oxy¬gen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 2021. 22(9): p. 4642.
20. Nakamura, H. and K. Takada, Reactive oxygen spe¬cies in cancer: Current findings and future direc¬tions. Cancer Science, 2021. 112(10): p. 3945.
21. Perillo, B., et al., ROS in cancer therapy: The bright side of the moon. Experimental & Molecular Medi¬cine, 2020. 52(2): p. 192-203.
22. Bedard, K. and K.-H. Krause, The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiological reviews, 2007. 87(1): p. 245-313.
23. Halliwell, B. and J.M. Gutteridge, Free radicals in biology and medicine. 2015: Oxford university press, USA.
24. Halliwell, B., Free radicals, antioxidants, and hu¬man disease: curiosity, cause, or consequence? The lancet, 1994. 344(8924): p. 721-724.
25. Jambunathan, N., Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol Biol, 2010. 639: p. 292-8.
26. Bugger, H. and K. Pfeil, Mitochondrial ROS in my¬ocardial ischemia reperfusion and remodeling. Bio¬chimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2020. 1866(7): p. 165768.
27. Bartosz, G., Reactive oxygen species: destroyers or messengers? Biochemical pharmacology, 2009. 77(8): p. 1303-1315.
28. Murphy, M.P. and R.C. Hartley, Mitochondria as a therapeutic target for common pathologies. Nature Reviews Drug Discovery, 2018. 17(12): p. 865-886.
29. Nagashima, M., et al., Formation of an oxidative DNA damage, 8-hydroxydeoxyguanosine, in mouse lung DNA after intratracheal instillation of diesel exhaust particles and effects of high dietary fat and beta-carotene on this process. Carcinogenesis, 1995. 16(6): p. 1441-5.
30. Frei, B., et al., Gas phase oxidants of cigarette smoke induce lipid peroxidation and changes in lipopro¬tein properties in human blood plasma. Protective effects of ascorbic acid. Biochemical Journal, 1991. 277(1): p. 133-138.
31. Halliwell, B., et al., Hydroxyl radical is a significant player in oxidative DNA damage in vivo. Chemical Society Reviews, 2021.
32. Kolachana, P., et al., Benzene and its phenolic me¬tabolites produce oxidative DNA damage in HL60 cells in vitro and in the bone marrow in vivo. Can¬cer research, 1993. 53(5): p. 1023-1026.
33. Shen, H.-M., et al., Aflatoxin B1-induced 8-hydrox¬ydeoxyguanosine formation in rat hepatic DNA. Carcinogenesis, 1995. 16(2): p. 419-422.
34. Mauthe, R.J., et al., Exposure of mammalian cell cultures to benzo [a] and light results in oxidative DNA damage as measured by 8-hydroxydeoxy¬guanosine formation. Carcinogenesis, 1995. 16(1): p. 133-137.
35. Sussman, M.S. and G.B. Bulkley, Oxygen-derived free radicals in reperfusion injury. Methods Enzy¬mol, 1990. 186: p. 711-23.
36. Zimmerman, B.J. and D.N. Granger, Reperfusion in¬jury. Surg Clin North Am, 1992. 72(1): p. 65-83.
37. Epe, B., Genotoxicity of singlet oxygen. Chemico-bi¬ological interactions, 1991. 80(3): p. 239-260.
38. Davies, K.J., Protein damage and degradation by ox¬ygen radicals. I. general aspects. J Biol Chem, 1987. 262(20): p. 9895-901.
39. Dröge, W., Free radicals in the physiological control of cell function. Physiol Rev, 2002. 82(1): p. 47-95.
40. Zhang, Y., et al., Mice deficient in both Mn super¬oxide dismutase and glutathione peroxidase-1 have increased oxidative damage and a greater incidence of pathology but no reduction in longevity. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 2009. 64(12): p. 1212-1220.
41. Van Remmen, H., et al., Life-long reduction in Mn¬SOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiological genomics, 2003. 16(1): p. 29-37.
42. Vineis, P. and C.P. Wild, Global cancer patterns: causes and prevention. The Lancet, 2014. 383(9916): p. 549-557.
43. Ames, B.N., Endogenous oxidative DNA damage, aging, and cancer. Free radical research communi¬cations, 1989. 7(3-6): p. 121-128.
44. Fraga, C.G., et al., Oxidative damage to DNA dur¬ing aging: 8-hydroxy-2’-deoxyguanosine in rat organ DNA and urine. Proceedings of the National Acade¬my of Sciences, 1990. 87(12): p. 4533-4537.
45. Clayson, D.B., R. Mehta, and F. Iverson, Oxidative DNA damage—the effects of certain genotoxic and operationally non-genotoxic carcinogens. Muta¬tion Research/Reviews in Genetic Toxicology, 1994. 317(1): p. 25-42.
46. Ames, B., L. Gold, and W. Willett, Review. The caus¬es and prevention of cancer. Proc. Natl. Acad. Sci. USA, 1995. 92: p. 5258-5265.
47. Cerutti, P., et al., The role of the cellular antioxidant defense in oxidant carcinogenesis. Environmental health perspectives, 1994. 102(suppl 10): p. 123-129.
48. “Oncogenes and tumor suppressor genes | Amer¬ican Cancer Society”. www.cancer.org. Retrieved 2019-09-26. 2019.
49. Weinberg, R., p53 and apoptosis: Master guardian and executioner. The Biology of Cancer. Garland Science. 2014, Taylor & Francis Group.
50. Sherr, C.J., Principles of tumor suppression. Cell, 2004. 116(2): p. 235-246.
51. Chial, H., Tumor suppressor (TS) genes and the two-hit hypothesis. Nature Education, 2008. 1(1): p. 177.
52. Makalowska, I., T. Wolfsberg, and W. Makalowski, On¬cogenes and cell proliferation. Current Opinion in Ge-netics & Development, 2001. 11(1): p. 9-10.
53. Rhim, J.S., Viruses, oncogenes, and cancer. Cancer Detection and Prevention, 1988. 11(3-6): p. 139-149.
54. Todd, R. and D.T. Wong, Oncogenes. Anticancer Res, 1999. 19(6a): p. 4729-46.
55. Cerutti, P., et al., Oxidant Carcinogenesis and Anti¬oxidant Defense a. Annals of the New York Acade¬my of Sciences, 1992. 663(1): p. 158-166.
56. Mazière, C., et al., Impairment of the EGF signal¬ing pathway by the oxidative stress generated with UVA. Free Radical Biology and Medicine, 2003. 34(6): p. 629-636.
57. Lemmon, M.A. and J. Schlessinger, Cell signaling by receptor tyrosine kinases. Cell, 2010. 141(7): p. 1117-1134.
58. Cantley, L.C., The phosphoinositide 3-kinase path¬way. Science, 2002. 296(5573): p. 1655-1657.
59. Ames, B.N., M.K. Shigenaga, and L.S. Gold, DNA le¬sions, inducible DNA repair, and cell division: three key factors in mutagenesis and carcinogenesis. En¬vironmental health perspectives, 1993. 101(suppl 5): p. 35-44.
60. Chen, L., et al., Oxidative DNA damage in prostate cancer patients consuming tomato sauce-based en¬trees as a whole-food intervention. Journal of the National Cancer Institute, 2001. 93(24): p. 1872-1879.
61. Paz-Elizur, T., et al., DNA repair of oxidative DNA damage in human carcinogenesis: potential appli¬cation for cancer risk assessment and prevention. Cancer letters, 2008. 266(1): p. 60-72.
62. Van Remmen, H. and A. Richardson, Oxidative damage to mitochondria and aging. Experimental gerontology, 2001. 36(7): p. 957-968.
63. Dalle-Donne, I., et al., Biomarkers of oxidative damage in human disease. Clinical chemistry, 2006. 52(4): p. 601-623.
64. Dizdaroglu, M., Chemical determination of free radical-induced damage to DNA. Free Radic Biol Med, 1991. 10(3-4): p. 225-42.
65. Dizdaroglu, M., Chemical determination of oxi¬dative DNA damage by gas chromatography-mass spectrometry. Methods Enzymol, 1994. 234: p. 3-16.
66. Breen, A.P. and J.A. Murphy, Reactions of oxyl rad¬icals with DNA. Free Radic Biol Med, 1995. 18(6): p. 1033-77.
67. Floyd, R.A., et al., Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mecha¬nisms of formation. Free Radic Res Commun, 1986. 1(3): p. 163-72.
68. Shigenaga, M.K., C.J. Gimeno, and B.N. Ames, Uri¬nary 8-hydroxy-2’-deoxyguanosine as a biological marker of in vivo oxidative DNA damage. Proc Natl Acad Sci U S A, 1989. 86(24): p. 9697-701.
69. Liu, S., et al., Quantitative assessment of Tet-in¬duced oxidation products of 5-methylcytosine in cellular and tissue DNA. Nucleic acids research, 2013. 41(13): p. 6421-6429.
70. Fischer-Nielsen, A., I.B. Jeding, and S. Loft, Radi¬ation-induced formation of 8-hydroxy-2’-deoxy¬guanosine and its prevention by scavengers. Car¬cinogenesis, 1994. 15(8): p. 1609-1612.
71. Friedberg, E.C., DNA damage and repair. Nature, 2003. 421(6921): p. 436-440.
72. Retèl, J., et al., Mutational specificity of oxidative DNA damage. Mutation Research/Genetic Toxicol¬ogy, 1993. 299(3-4): p. 165-182.
73. Kamiya, H., et al., Comparison of incorporation and extension of nucleotides in vitro opposite 8-hydrox-yguanine (7,8-dihydro-8-oxoguanine) in hot spots of the c-Ha-ras gene. Jpn J Cancer Res, 1995. 86(3): p. 270-6.
74. Kuchino, Y., et al., Misreading of DNA templates containing 8-hydroxydeoxyguanosine at the mod¬ified base and at adjacent residues. Nature, 1987. 327(6117): p. 77-9.
75. Shibutani, S., M. Takeshita, and A.P. Grollman, Insertion of specific bases during DNA synthesis past the oxidation-damaged base 8-oxodG. Nature, 1991. 349(6308): p. 431-4.
76. Shibutani, S., Quantitation of base substitutions and deletions induced by chemical mutagens dur¬ing DNA synthesis in vitro. Chem Res Toxicol, 1993. 6(5): p. 625-9.
77. Kamiya, H., et al., c-Ha-ras containing 8-hydroxy¬guanine at codon 12 induces point mutations at the modified and adjacent positions. Cancer research, 1992. 52(12): p. 3483-3485.
78. Cheng, K.C., et al., 8-Hydroxyguanine, an abun¬dant form of oxidative DNA damage, causes GT and AC substitutions. Journal of Biological Chemistry, 1992. 267(1): p. 166-172.
79. Higinbotham, K.G., et al., GGT to GTT transversions in codon 12 of the K-ras oncogene in rat renal sar¬comas induced with nickel subsulfide or nickel sub¬sulfide/iron are consistent with oxidative damage to DNA. Cancer Research, 1992. 52(17): p. 4747-4751.
80. Harris, C.C. and M. Hollstein, Clinical implications of the p53 tumor-suppressor gene. N Engl J Med, 1993. 329(18): p. 1318-27.
81. Hollstein, M., et al., p53 mutations in human can¬cers. Science, 1991. 253(5015): p. 49-53.
82. Hussain, S.P., et al., Oxy-radical induced mutagene¬sis of hotspot codons 248 and 249 of the human p53 gene. Oncogene, 1994. 9(8): p. 2277-81.
83. Feig, D.I. and L.A. Loeb, Mechanisms of mutation by oxidative DNA damage: reduced fidelity of mam¬malian DNA polymerase beta. Biochemistry, 1993. 32(16): p. 4466-73.
84. Weitzman, S.A., et al., Free radical adducts induce alterations in DNA cytosine methylation. Proceed¬ings of the National Academy of Sciences, 1994. 91(4): p. 1261-1264.
85. Olinski, R., et al., DNA base modifications in chro¬matin of human cancerous tissues. FEBS letters 1992. 309(2): p. 193-198.
86. Cathcart, R., et al., Thymine glycol and thymidine glycol in human and rat urine: a possible assay for oxidative DNA damage. Proceedings of the National Academy of Sciences, 1984. 81(18): p. 5633-5637.
87. Adelman, R., R.L. Saul, and B.N. Ames, Oxidative damage to DNA: relation to species metabolic rate and life span. Proceedings of the National Acade¬my of Sciences, 1988. 85(8): p. 2706-2708.
88. Loft, S., et al., Oxidative DNA damage estimated by 8-hydroxydeoxyguanosine excretion in humans: influence of smoking, gender and body mass index. Carcinogenesis, 1992. 13(12): p. 2241-2247.
89. Wang, Y.-J., et al., Oxidative modification of DNA bases in rat liver and lung during chemical car¬cinogenesis and aging. Chemico-biological interac¬tions, 1995. 94(2): p. 135-145.
90. Ogawa, T., et al., Role of reactive oxygen in synthet¬ic estrogen induction of hepatocellular carcinomas in rats and preventive effect of vitamins. Carcino¬genesis, 1995. 16(4): p. 831-836.
91. Hayakawa, M., et al., Age-associated oxygen dam¬age and mutations in mitochondrial DNA in hu¬man hearts. Biochemical and biophysical research communications, 1992. 189(2): p. 979-985.
92. Mecocci, P., et al., Oxidative damage to mitochondri¬al DNA shows marked age‐dependent increases in human brain. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology Society, 1993. 34(4): p. 609-616.
93. DePinho, R.A., The age of cancer. Nature, 2000. 408(6809): p. 248-254.
94. Herst, P.M. and M.V. Berridge, Cell surface oxygen consumption: a major contributor to cellular oxy¬gen consumption in glycolytic cancer cell lines. Bi¬ochimica et Biophysica Acta (BBA)-Bioenergetics, 2007. 1767(2): p. 170-177.
95. Goldman, M.B., R.R. Monson, and F. Maloof, Can¬cer mortality in women with thyroid disease. Can¬cer Research, 1990. 50(8): p. 2283-2289.
96. Poulsen, H., H. Prieme, and S. Loft, Role of oxidative DNA damage in cancer initiation and promotion. Euro-pean Journal of Cancer Prevention, 1998. 7(1): p. 9-16.
97. Lunec, J., et al., 8‐Hydroxydeoxyguanosine: A mark¬er of oxidative DNA damage in systemic lupus ery-thematosus. FEBS letters, 1994. 348(2): p. 131-138.
98. Bashir, S., et al., Oxidative DNA damage and cellu¬lar sensitivity to oxidative stress in human autoim¬mune diseases. Annals of the rheumatic diseases, 1993. 52(9): p. 659-666.
99. Floyd, R.A., et al., Hydroxyl free radical adduct of deoxyguanosine: sensitive detection and mecha¬nisms of formation. Free radical research commu¬nications, 1986. 1(3): p. 163-172.
100. Cajigas, A., et al., Ozonation of DNA forms ad¬ducts: a 32P-DNA labeling and thin-layer chroma¬tography technique to measure DNA environmen¬tal biomarkers. Archives of Environmental Health: An International Journal, 1994. 49(1): p. 25-36.
101. Musarrat, J. and A.A. Wani, Quantitative immu¬noanalysis of promutagenic 8-hydroxy-2’-deoxy¬guanosine in oxidized DNA. Carcinogenesis, 1994. 15(9): p. 2037-2043.
102. Teixeira, A.J., et al., Analysis of 8-Hydroxy-2′-deox¬yguanosine in Rat Urine and Liver DNA by Stable Isotope Dilution Gas Chromatography/MassSpec¬trometry. Analytical biochemistry, 1995. 226(2): p. 307-319.
103. Faure, H., et al., Gas chromatographic—mass spectrometric determination of 5-hydroxymethy¬luracil in human urine by stable isotope dilution. Journal of Chromatography B: Biomedical Sciences and Applications, 1993. 616(1): p. 1-7.
104. Suzuki, J., Y. Inoue, and S. Suzuki, Changes in the urinary excretion level of 8-hydroxyguanine by expo¬sure to reactive oxygen-generating substances. Free Radical Biology and Medicine, 1995. 18(3): p. 431-436.
105. Loft, S., et al., Oxidative DNA damage after trans¬plantation of the liver and small intestine in pigs. Transplantation, 1995. 59(1): p. 16-20.
106. Teixeira, A.J., et al., Analysis of 8-hydroxy-2’-de¬oxyguanosine in rat urine and liver DNA by stable isotope dilution gas chromatography/mass spec¬trometry. Anal Biochem, 1995. 226(2): p. 307-19.
107. Simic, M.G. and D.S. Bergtold, Dietary modulation of DNA damage in human. Mutat Res, 1991. 250(1- 2): p. 17-24.
108. Barregard, L., et al., Human and methodological sources of variability in the measurement of urinary 8-oxo-7, 8-dihydro-2′-deoxyguanosine. Antioxidants & redox signaling, 2013. 18(18): p. 2377-2391.
109. Halliwell, B., Effect of diet on cancer development: is oxidative DNA damage a biomarker? Free Radical Bi-ology and Medicine, 2002. 32(10): p. 968-974.
110. Loft, S., et al., Energy restriction and oxidative DNA damage in humans. Cancer Epidemiology and Prevention Biomarkers, 1995. 4(5): p. 515-519.
111. Loft, S., et al., Oxidative DNA damage correlates with oxygen consumption in humans. The FASEB journal, 1994. 8(8): p. 534-537.
112. Cutler, R.G., Human longevity and aging: possible role of reactive oxygen species. Annals of the New York Academy of Sciences, 1991. 621(1): p. 1-28.
113. Loft, S., et al., 8‐Hydroxydeoxyguanosine as a uri¬nary biomarker of oxidative DNA damage. Journal of Toxicology and Environmental Health, Part A Current Issues, 1993. 40(2-3): p. 391-404.
114. Chance, B., H. Sies, and A. Boveris, Hydroperoxide metabolism in mammalian organs. Physiological reviews, 1979. 59(3): p. 527-605.
115. Else, P. and A. Hulbert, Mammals: an allometric study of metabolism at tissue and mitochondrial level. American Journal of Physiology-Regulato¬ry, Integrative and Comparative Physiology, 1985. 248(4): p. R415-R421.
116. Sohal, R. and W. Orr, Relationship between Anti¬oxidants, Prooxidants, and the Aging Process a. An¬nals of the New York Academy of Sciences, 1992. 663(1): p. 74-84.
117. Richter, C., J.-W. Park, and B.N. Ames, Normal ox¬idative damage to mitochondrial and nuclear DNA is extensive. Proceedings of the National Academy of Sciences, 1988. 85(17): p. 6465-6467.
118. Richter, C., Oxidative damage to mitochondrial DNA and its relationship to ageing. The interna¬tional journal of biochemistry & cell biology, 1995. 27(7): p. 647-653.
119. Masoro, E., I. Shimokawa, and B. Yu, Retardation of the aging processes in rats by food restriction. Annals of the New York Academy of Sciences, 1991. 621(1): p. 337-352.
120. Turturro, A. and R.W. Hart, Longevity‐assurance mechanisms and caloric restriction. Annals of the New York Academy of Sciences, 1991. 621(1): p. 363-372.
121. Weraarchakul, N., et al., The effect of aging and di¬etary restriction on DNA repair. Experimental cell research, 1989. 181(1): p. 197-204.
122. Chung, M.H., et al., Protection of DNA damage by dietary restriction. Free Radical Biology and Medi¬cine, 1992. 12(6): p. 523-525.
123. Djuric, Z., et al., Oxidative DNA damage levels in rats fed low-fat, high-fat, or calorie-restricted di¬ets. Toxicology and applied pharmacology, 1992. 115(2): p. 156-160.
124. Semsei, I., G. Rao, and A. Richardson, Changes in the expression of superoxide dismutase and cat¬alase as a function of age and dietary restriction. Biochemical and biophysical research communica¬tions, 1989. 164(2): p. 620-625.
125. Youngman, L.D., J. Park, and B.N. Ames, Protein oxidation associated with aging is reduced by die¬tary restriction of protein or calories. Proceedings of the National Academy of Sciences, 1992. 89(19): p. 9112-9116.
126. Velthuis-Te Wierik, E.J., et al., Short-term moder¬ate energy restriction does not affect indicators of oxidative stress and genotoxicity in humans. The Journal of nutrition, 1995. 125(10): p. 2631-2639.
127. Djuric, Z., et al., Effects of a low-fat diet on levels of oxidative damage to DNA to human peripher¬al nucleated blood cells. J Natl Cancer Inst, 1991. 83(11): p. 766-9.
128. Ono, A., et al., The preventive effect of dietary an¬tioxidants on cervical cancer development. Medici¬na, 2020. 56(11): p. 604.
129. Seifried, H.E., et al., A review of the interaction among dietary antioxidants and reactive oxygen species. The Journal of nutritional biochemistry, 2007. 18(9): p. 567-579.
130. Prestera, T., et al., Chemical and molecular regu¬lation of enzymes that detoxify carcinogens. Pro¬ceedings of the National Academy of Sciences, 1993. 90(7): p. 2965-2969.
131. Zhang, Y., et al., Anticarcinogenic activities of sulfo¬raphane and structurally related synthetic norbornyl isothiocyanates. Proceedings of the National Acade¬my of Sciences, 1994. 91(8): p. 3147-3150.
132. Loft, S. and H.E. Poulsen, Cancer risk and oxida¬tive DNA damage in man. Journal of molecular medicine, 1996. 74(6): p. 297-312.
133. Shimoda, R., et al., Increased formation of oxida¬tive DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer re¬search, 1994. 54(12): p. 3171-3172.
134. Brown, R.K., et al., Oxidative damage to DNA in patients with cystic fibrosis. Free Radical Biology and Medicine, 1995. 18(4): p. 801-806.
135. Hagen, T.M., et al., Extensive oxidative DNA dam¬age in hepatocytes of transgenic mice with chronic active hepatitis destined to develop hepatocellular carcinoma. Proceedings of the National Academy of Sciences, 1994. 91(26): p. 12808-12812.
136. Yamamoto, F., et al., Elevated level of 8‐hydroxyde¬oxyguanosine in DNA of liver, kidneys, and brain of Long‐Evans Cinnamon rats. Japanese journal of cancer research, 1993. 84(5): p. 508-511.
137. Block, G., B. Patterson, and A. Subar, Fruit, vege¬tables, and cancer prevention: a review of the epi¬demiological evidence. Nutrition and cancer, 1992. 18(1): p. 1-29.
138. Block, G., The data support a role for antioxidants in reducing cancer risk. Nutrition reviews, 1992. 50(7): p. 207-213.
139. Blot, W.J., et al., Nutrition intervention trials in Linxian, China: supplementation with specific vi¬tamin/mineral combinations, cancer incidence, and disease-specific mortality in the general popu¬lation. JNCI: Journal of the National Cancer Insti¬tute, 1993. 85(18): p. 1483-1491.
140. Group, A.-T.B.C.C.P.S., The effect of vitamin E and beta carotene on the incidence of lung cancer and other cancers in male smokers. New England Jour¬nal of Medicine, 1994. 330(15): p. 1029-1035.
141. Fenech, M. and S. Bonassi, The effect of age, gen¬der, diet and lifestyle on DNA damage measured using micronucleus frequency in human peripher¬al blood lymphocytes. Mutagenesis, 2011. 26(1): p. 43-49.
142. Fenech, M., C. Aitken, and J. Rinaldi, Folate, vi¬tamin B12, homocysteine status and DNA damage in young Australian adults. Carcinogenesis, 1998. 19(7): p. 1163-1171.
143. Fenech, M., Recommended dietary allowances (RDAs) for genomic stability. Mutation Research/ Fundamental and Molecular Mechanisms of Mu¬tagenesis, 2001. 480: p. 51-54.
144. Fenech, M., Micronutrients and genomic stabil¬ity: a new paradigm for recommended dietary al¬lowances (RDAs). Food and Chemical Toxicology, 2002. 40(8): p. 1113-1117.
145. Fenech, M., The role of nutrition in DNA repli¬cation, DNA damage prevention and DNA repair, in Principles of Nutrigenetics and Nutrigenomics. 2020, Elsevier. p. 27-32.
146. Fenech, M., Biomarkers of genetic damage for can¬cer epidemiology. Toxicology, 2002. 181: p. 411-416.
147. Hainaut, P. and K. Mann, Zinc binding and redox control of p53 structure and function. Antioxidants and Redox Signaling, 2001. 3(4): p. 611-623.
Files
IssueVol 13 No 4 (2021) QRcode
SectionReviews
DOI https://doi.org/10.18502/bccr.v13i4.14400
Keywords
Cancer DNA Oxidative damage Mutation

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Karimi M, Roudini K, Zendehdel A, Toorang F, Ebrahimpour-Koujan S. DNA oxidation-based analysis: A new approach to assessing the relationship between nutrition and cancer. Basic Clin Cancer Res. 2022;13(4):258-271.