Application of Novel Molecular Biology in Cancer Therapy
Abstract
Cancer is a genetic illness that develops for a variety of reasons, including the activation of onco-genes, the failure of tumor suppressor genes, or mutagenesis induced by environmental stimuli. This article was produced using data from the journals PubMed, Nature, Science Direct, Springer, and Elsevier. Oncogenes are altered forms of normal proto-oncogenic genes that are important for cell proliferation, development, and regulation. The transformation of a gene to an oncogene is caused by translocation, chromosomal translocation, or gene mutation due to addition, deletion, duplication, or viral infection. To limit malignant cell development, these oncogens are targeted by medications or the RNAi system. Various molecular biology methods for cancer detection and treatment have been developed, including retroviral therapy, oncogene silencing, and alterations in tumor suppressor genes. Among all the techniques used, RNAi, zinc finger nucleases, and CRISPR have a greater chance of reaching a cancer-free planet.
1. Innao, V., et al., Therapeutic potential of antagomiRs in haema¬tological and oncological neoplasms. 2020. 29(2): p. e13208.
2. Teixeira, F.J., et al., Whey protein in cancer therapy: a narrative review. 2019. 144: p. 245-256.
3. Lever, J., et al., CancerMine: a literature-mined resource for driv¬ers, oncogenes and tumor suppressors in cancer. Nat Methods, 2019. 16(6): p. 505-507.
4. McLean, L., et al., Immunotherapy in oncogene addicted non-small cell lung cancer. 2021. 10(6): p. 2736.
5. Tu, S.-M.J.C., Stem Cell Theory of Cancer: Implications of a Viral Etiology in Certain Malignancies. 2021. 13(11): p. 2738.
6. Pala, L., et al., Course of Sars-CoV2 infection in patients with cancer treated with anti-PD-1: A case presentation and review of the literature. 2021. 39(1): p. 9-14.
7. Kontomanolis, E.N., et al., Role of Oncogenes and Tumor-suppres¬sor Genes in Carcinogenesis: A Review. 2020. 40(11): p. 6009-6015.
8. Ouafidi, B., et al., Diagnosis and management of a spontaneous heterotopic pregnancy: Rare case report. 2021. 84: p. 106184.
9. Jan, R.J.A.p.b., Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. 2019. 9(2): p. 205.
10. Chen, L., et al., Regulating tumor suppressor genes: post-transla¬tional modifications. 2020. 5(1): p. 1-25.
11. Huang, A.Z., A. Delaidelli, and P.H.J.A.n.c. Sorensen, RNA mod¬ifications in brain tumorigenesis. 2020. 8(1): p. 1-13.
12. Sun, Y., et al., Downregulation of miRNA-205 Expression and Bi¬ological Mechanism in Prostate Cancer Tumorigenesis and Bone Metastasis. 2020. 2020.
13. Schrock, M.S., et al. APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. in Seminars in cancer biology. 2020. Elsevier.
14. Kirtonia, A., et al., The multifaceted role of reactive oxygen spe¬cies in tumorigenesis. 2020: p. 1-25.
15. Gaglia, M.M. and K.J.C.o.i.v. Munger, More than just oncogenes: mechanisms of tumorigenesis by human viruses. 2018. 32: p. 48-59.
16. Jia, Q., et al., Oncogenic super-enhancer formation in tumori¬genesis and its molecular mechanisms. 2020. 52(5): p. 713-723.
17. Perillo, B., et al., ROS in cancer therapy: The bright side of the moon. 2020. 52(2): p. 192-203.
18. Brennan, A., et al., Selective antagonism of cJun for cancer ther¬apy. 2020. 39(1): p. 1-16.
19. Yuan, J., et al., The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. 2020. 13(1): p. 1-19.
20. Ferrara, M.G., et al., Oncogene-addicted non-small-cell lung cancer: Treatment opportunities and future perspectives. 2020. 12(5): p. 1196.
21. Wang, F., P.B. SJ, and W.J.L.R. Qiu, Novel oncogenes and tumor suppressor genes in hepatocellular carcinoma☆. 2021.
22. Buscail, L., B. Bournet, and P. Cordelier, Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol, 2020. 17(3): p. 153-168.
23. Westermarck, J. and B.G.J.C. Neel, Piecing together a broken tumor suppressor phosphatase for cancer therapy. 2020. 181(3): p. 514-517.
24. Yang, H., et al., Systematic analysis of aberrant biochemical net¬works and potential drug vulnerabilities induced by tumor suppres¬sor loss in malignant pleural mesothelioma. 2020. 12(8): p. 2310.
25. Gao, L., et al., Overcoming anti-cancer drug resistance via res¬toration of tumor suppressor gene function. Drug Resist Updat, 2021. 57: p. 100770.
26. Goshu, B.T., Molecular biology for cancer therapy: Review arti¬cles. 2021.
27. Lipsick, J.J.C.S.H.p.i.b., A history of cancer research: Tumor sup¬pressor genes. 2020. 12(2): p. a035907.
28. Zhang, C., et al., Use tumor suppressor genes as biomarkers for diagnosis of non-small cell lung cancer. 2021. 11(1): p. 1-13.
29. Cheng, K., et al., Synthetic lethality across normal tissues is strongly associated with cancer risk, onset, and tumor suppressor specificity. 2021. 7(1): p. eabc2100.
30. Gregoire‐Mitha, S. and D.A.J.B. Gray, What deubiquitinating en¬zymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? 2021. 43(4): p. 2000269.
31. Datta, N., et al., Tumor Suppressors Having Oncogenic Func¬tions: The Double Agents. Cells, 2020. 10(1).
32. Soletti, R.C., et al., Inhibition of pRB pathway differentially modu¬lates apoptosis in esophageal cancer cells. 2017. 10(5): p. 726-733.
33. Sprissler, R., et al., Rare tumor-normal matched whole exome sequencing identifies novel genomic pathogenic germline and somatic aberrations. 2020. 12(6): p. 1618.
34. Callen, D.F.J.b., Revisiting the identification of breast cancer tu¬mour suppressor genes defined by copy number loss of the long arm of chromosome 16. 2021.
35. Zhao, X., et al., Combinatorial CRISPR/Cas9 Screening Reveals Epistatic Networks of Interacting Tumor Suppressor Genes and Therapeutic Targets in Human Breast Cancer. 2021.
36. Xia, X., et al., Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer. 2020. 8(1): p. 1-13.
37. Haridhasapavalan, K.K., P.K. Sundaravadivelu, and R.P.J.M.B. Thummer, Codon optimization, cloning, expression, purifica¬tion, and secondary structure determination of human ETS2 transcription factor. 2020. 62(10): p. 485-494.
38. van Belzen, I.A., et al., Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq and WGS. 2021.
39. Amiri, V., et al., Transcription analysis of a histones modifiers panel coupled with critical tumor suppressor genes displayed fre¬quent changes in patients with AML.: mRNA levels of histones modifiers and TSGs in AML. 2021. 69(4): p. 103311.
40. Fatma, H., H.R. Siddique, and S.K.J.E. Maurya, The multiple fac¬es of NANOG in cancer: a therapeutic target to chemosensitize therapy-resistant cancers. 2021(0).
41. Sanaei, M. and F.J.A.P.J.o.C.P. Kavoosi, Effect of Valproic Acid on the Class I Histone Deacetylase 1, 2 and 3, Tumor Suppressor Genes p21WAF1/CIP1 and p53, and Intrinsic Mitochondrial Ap¬optotic Pathway, Pro-(Bax, Bak, and Bim) and anti-(Bcl-2, Bcl-xL, and Mcl-1) Apoptotic Genes Expression, Cell Viability, and Ap¬optosis Induction in Hepatocellular Carcinoma HepG2 Cell Line. 2021. 22(S1): p. 89-95.
42. Andrysik, Z., et al., Multi-omics analysis reveals contextual tu¬mor suppressive and oncogenic gene modules within the acute hypoxic response. 2021. 12(1): p. 1-18.
43. Tottone, L., et al., A Tumor Suppressor Enhancer of PTEN in T-cell development and leukemia. 2021. 2(1): p. 92.
44. Nagaraju, G.P., et al. Epigenetics in hepatocellular carcinoma. in Seminars in Cancer Biology. 2021. Elsevier.
45. Chen, Y., et al., Identifying Key Genes for Nasopharyngeal Car¬cinoma by Prioritized Consensus Differentially Expressed Genes Caused by Aberrant Methylation. 2021. 12(3): p. 874.
46. Kaufman-Szymczyk, A. and K.J.A.B.P. Lubecka, The effects of clofarabine in ALL inhibition through DNA methylation regula¬tion. 2020. 67(1): p. 65-72.
47. Hosseini Sarani, N., et al., Mini-review: the p53 gene as a bona fide tumor suppressor gene in human skin cancers. 2021. 24(2): p. 132-138.
48. Wee, Y., Y. Liu, and M.J.P. Zhao, Identification of consistent post-translational regulatory triplets related to oncogenic and tu¬mour suppressive modulators in childhood acute lymphoblastic leukemia. 2021. 9: p. e11803.
49. Witek, Ł., et al., Analysis of microRNA regulating cell cycle-re¬lated tumor suppressor genes in endometrial cancer patients. Hum Cell, 2021. 34(2): p. 564-569.
50. Wu, F., et al., Sirtuin 7 super-enhancer drives epigenomic repro¬gramming in hepatocarcinogenesis. 2021.
51. Lee, D.Y., et al., Oncogenic orphan nuclear receptor NR4A3 in¬teracts and cooperates with MYB in acinic cell carcinoma. 2020. 12(9): p. 2433.
52. Liu, Z., et al., Systematic analysis of the aberrances and function¬al implications of ferroptosis in cancer. 2020. 23(7): p. 101302.
53. Singh, S., et al., Demethylation of Tumor Suppressor Genes In Leukemia By Using Natural Compounds. 2020. 12(5): p. 1-8.
54. Zhang, W., et al., CMV Status Drives Distinct Trajectories of CD4+ T Cell Differentiation. 2021. 12: p. 1163.
55. Abdullah, O., et al., Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. 2021. 12(5): p. 622.
56. Ou, M., et al., Single-cell sequencing reveals the potential onco¬genic expression atlas of human iPSC-derived cardiomyocytes. 2021. 10(2): p. bio053348.
57. Vydra, N., et al., 17β-estradiol activates HSF1 via MAPK signal¬ing in ERα-positive breast cancer cells. 2019. 11(10): p. 1533.
58. Miallot, R., et al., Metabolic landscapes in sarcomas. 2021. 14(1): p. 1-23.
59. Bhyan, S.B., et al., Exploring the role of post-translational mod¬ulators of transcription factors in triple-negative breast cancer gene expression. 2020. 24: p. 100681.
60. Supper, E., et al., Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain my-eloid leukemia. 2021. 12(1): p. 1-20.
61. Sanaei, M., et al., DNA methylation of tumor suppressor genes in hepatocellular carcinoma. 2020.
62. Sekulovski, N., et al., Niclosamide’s potential direct targets in ovarian cancer. 2021.
63. Patel, R.R., et al., Tumor mutational burden and driver muta¬ tions: Characterizing the genomic landscape of pediatric brain tumors. 2020. 67(7): p. e28338.
64. Jansen, A.M., et al., Novel candidates in early-onset familial colorectal cancer. 2020. 19(1): p. 1-10.
65. Datta, N., et al., Tumor Suppressors Having Oncogenic Func¬tions: The Double Agents. 2021. 10(1): p. 46.
66. Sreedurgalakshmi, K., R. Srikar, and R.J.C.G.T. Rajkumari, CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. 2020: p. 1-15.
67. Martin, T.D., et al., The adaptive immune system is a major driv¬er of selection for tumor suppressor gene inactivation. 2021. 373(6561): p. 1327-1335.
68. Lao, T.D., T.N. Nguyen, and T.A.H.J.D. Le, Promoter Hypermeth¬ylation of Tumor Suppressor Genes Located on Short Arm of the Chromosome 3 as Potential Biomarker for the Diagnosis of Na¬sopharyngeal Carcinoma. 2021. 11(8): p. 1404.
69. Dhawan, A., et al., Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downreg¬ulation of tumour suppressors. 2018. 9(1): p. 1-13.
70. Rifaï, K., et al., Breaking down the contradictory roles of histone deacetylase SIRT1 in human breast cancer. 2018. 10(11): p. 409.
71. Vélez-Reyes, G.L., et al., Transposon Mutagenesis-Guided CRIS¬PR/Cas9 Screening Strongly Implicates Dysregulation of Hippo/ YAP Signaling in Malignant Peripheral Nerve Sheath Tumor De¬velopment. 2021. 13(7): p. 1584.
72. Li, Z., et al., The OncoPPi network of cancer-focused protein– protein interactions to inform biological insights and therapeutic strategies. 2017. 8(1): p. 1-14.
73. Laaniste, L., et al., Integrated systems‐genetic analyses reveal a net¬work target for delaying glioma progression. 2019. 6(9): p. 1616-1638.
74. Kodama, M., et al., Sleeping Beauty transposon mutagenesis identifies genes driving the initiation and metastasis of uterine leiomyosarcoma. 2021. 81(21): p. 5413-5424.
75. Hsiao, T.-F., et al., Integrative omics analysis reveals soluble cad¬herin-3 as a survival predictor and.
76. Xia, M., et al., Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. 2021.
77. Liang, Y., et al., Reactivation of tumour suppressor in breast can¬cer by enhancer switching through NamiRNA network. 2021. 49(15): p. 8556-8572.
78. Singh, N.P., P.J.M.G. Vinod, and Genomics, Integrative analysis of DNA methylation and gene expression in papillary renal cell carcinoma. 2020. 295(3).
79. Terkelsen, T., et al., Secreted breast tumor interstitial fluid mi¬croRNAs and their target genes are associated with triple-nega¬tive breast cancer, tumor grade, and immune infiltration. 2020. 22(1): p. 1-36.
80. Mishra, R.K., et al., Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. 2020. 20(20): p. 1810-1823.
81. EAR, E.N.S., A.A. Irekeola, and C.J.D. Yean Yean, Diagnostic and prognostic indications of nasopharyngeal carcinoma. 2020. 10(9): p. 611.
82. Fernandes, R.C., et al., MicroRNA-194 promotes lineage plastici¬ty in advanced prostate cancer. 2019: p. 752709.
83. Fernandes, R.C., et al., Post-transcriptional gene regulation by microrna-194 promotes neuroendocrine transdifferentiation in prostate cancer. 2021. 34(1): p. 108585.
84. Li, B., Q. Huang, and G.-H.J.C. Wei, The role of HOX transcription factors in cancer predisposition and progression. 2019. 11(4): p. 528.
85. Ghasemi, S., et al., Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). 2021.
86. Mondal, P., et al. Progress and Promises of Epigenetic Drugs and Epigenetic Diets in Cancer Prevention and Therapy: A Clinical Update. in Seminars in Cancer Biology. 2020. Elsevier.
87. Fardi, M., et al., Epigenetic mechanisms as a new approach in cancer treatment: An updated review. 2018. 5(4): p. 304-311.
88. Tang, S., et al., MicroRNAs: Emerging oncogenic and tumor-sup¬pressive regulators, biomarkers and therapeutic targets in lung cancer. 2021. 502: p. 71-83.
89. Prazak, L., et al., A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. 2021. 32(21): p. ar26.
90. Li, X., et al., The dual role of STAT1 in ovarian cancer: insight into molecular mechanisms and application potentials. 2021. 9.
91. Otálora Otálora, B.A., et al., RUNX family: Oncogenes or tumor suppressors. 2019. 42(1): p. 3-19.
92. Hsiue, E.H.-C., et al., Targeting a neoantigen derived from a com¬mon TP53 mutation. 2021. 371(6533).
93. Schmidt, A.-K., et al., The p53/p73-p21 CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells. 2021. 40(2): p. 436-451.
94. Kuo, K.K., et al., Therapeutic Strategies Targeting Tumor Suppres¬sor Genes in Pancreatic Cancer. Cancers (Basel), 2021. 13(15).
95. Strasser, A. and D.L.J.M.C. Vaux, Cell death in the origin and treatment of cancer. 2020. 78(6): p. 1045-1054.
96. Sharma, S. and K.J.M. Munger, Expression of the long noncod¬ing RNA DINO in human papillomavirus-positive cervical can¬cer cells reactivates the dormant TP53 tumor suppressor through ATM/CHK2 signaling. 2020. 11(3): p. e01190-20.
97. Kim, A., et al., Integrative Genomic and Transcriptomic Analyses of Tumor Suppressor Genes and Their Role on Tumor Microen-vironment and Immunity in Lung Squamous Cell Carcinoma. Front Immunol, 2021. 12: p. 598671.
98. Hughley, R., et al., Etiologic index—A case-only measure of BRCA1/2–associated cancer risk. 2020. 383(3): p. 286-288.
99. Eozenou, C., et al., Testis formation in XX individuals resulting from novel pathogenic variants in Wilms’ tumor 1 (WT1) gene. 2020. 117(24): p. 13680-13688.
100. Weiss, A.C., et al., Expansion of the renal capsular stroma, ure¬teric bud branching defects and cryptorchidism in mice with W ilms tumor 1 gene deletion in the stromal compartment of the developing kidney. 2020. 252(3): p. 290-303.
101. Goel, H., et al., Molecular update on biology of Wilms Tumor 1 gene and its applications in acute myeloid leukemia. 2020. 10(5): p. 151.
102. Maciaszek, J.L., N. Oak, and K.E.J.H.m.g. Nichols, Recent advanc¬es in Wilms’ tumor predisposition. 2020. 29(R2): p. R138-R149.
103. Piombino, E., et al., Wilms’ Tumor 1 (WT1): A Novel Immu¬nomarker of Dermatofibrosarcoma Protuberans—An Immuno-histochemical Study on a Series of 114 Cases of Bland-Looking Mesenchymal Spindle Cell Lesions of the Dermis/Subcutaneous Tissues. 2021. 13(2): p. 252.
104. Zhang, M., et al., Origins of nonsense mutations in human tumor suppressor genes. 2021. 823: p. 111761.
105. Pareja, F., C. Marchiò, and J.S.J.D.H. Reis-Filho, Molecular diag¬nosis in breast cancer. 2018. 24(2): p. 71-82.
106. Imran, A., et al., Role of molecular biology in cancer treatment: A review article. 2017. 46(11): p. 1475.
107. Wang, X.-J., et al., Recent advances in natural therapeutic ap¬proaches for the treatment of cancer. 2020. 32(2): p. 53-65.
108. Liu, H., et al., Delivery of the Bioactive Component Paeonol by Dual pH‐Responsive Nanoparticles Enhances Anti‐Metastatic Tumor Efficiency. 2021. 7(1): p. 50-60.
109. Yang, L., et al., Targeting cancer stem cell pathways for cancer therapy. 2020. 5(1): p. 1-35.
110. Zhang, Q., et al., The role and specific mechanism of OCT4 in cancer stem cells: a review. 2020. 13(3): p. 312.
111. Chen, G., et al., Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. 2020. 9(9): p. 1-14.
112. Liu, S., et al., Methylation status of the Nanog promoter deter¬mines the switch between cancer cells and cancer stem cells. 2020. 7(5): p. 1903035.
113. Jin, X., et al., OCT4 Suppresses Metastasis in Breast Cancer Cells Through Activation of STAT3 Signaling. 2020.
114. Wang, S., et al., Caveolin-1 inhibits breast cancer stem cells via c-Myc-mediated metabolic reprogramming. 2020. 11(6): p. 1-16.
115. Fendler, A., et al., Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. 2020. 11(1): p. 1-16.
116. Zhang, X., et al., Arsenic trioxide induces differentiation of can¬cer stem cells in hepatocellular carcinoma through inhibition of LIF/JAK1/STAT3 and NF‐kB signaling pathways synergistically. 2021. 11(2): p. e335.
117. .Sneha, S., et al., The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. 2020. 43(4): p. 601-616.
118. Seeneevassen, L., et al., Leukaemia Inhibitory Factor (LIF) In¬hibits Cancer Stem Cells Tumorigenic Properties through Hippo Kinases Activation in Gastric Cancer. 2020. 12(8): p. 2011.
119. Cui, J., et al., Natural Products Targeting Cancer Stem Cells: A Revisit. 2021.
120. Yan, G., et al., TGFβ/cyclin D1/Smad-mediated inhibition of BMP4 promotes breast cancer stem cell self-renewal activity. 2021. 10(3): p. 1-14.
121. Chen, S.Z., et al., 4‐phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR‐α. 2021. 11(4): p. e379.
122. Gaudelli, N.M., et al., Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017. 551(7681): p. 464-471.
123. Dunbar, C.E., et al., Gene therapy comes of age. 2018. 359(6372).
124. Golubeva, T.S., V.A. Cherenko, and K.E. Orishchenko, Recent Ad¬vances in the Development of Exogenous dsRNA for the Induction of RNA Interference in Cancer Therapy. Molecules, 2021. 26(3).
125. Ghosh, S., et al., Viral vector systems for gene therapy: a com¬prehensive literature review of progress and biosafety challenges. 2020. 25(1): p. 7-18.
126. Eisenman, D., S. Debold, and J.J.A.B. Riddle, A Changing World in Gene Therapy Research: Exciting Opportunities for Medical Advancement and Biosafety Challenges. 2021.
127. Brown, A.M., et al., Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings. 2020. 25(4): p. 184-193.
128. Levine, B.L., et al., Global Manufacturing of CAR T Cell Therapy. Mol Ther Methods Clin Dev, 2017. 4: p. 92-101.
129. Lundstrom, K., RNA Viruses as Tools in Gene Therapy and Vac¬cine Development. Genes (Basel), 2019. 10(3).
130. Milone, M.C. and U. O’Doherty, Clinical use of lentiviral vectors. Leukemia, 2018. 32(7): p. 1529-1541.
131. Lee, C.S., et al., Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis, 2017. 4(2): p. 43-63.
132. Ronzitti, G., D.-A. Gross, and F.J.F.i.i. Mingozzi, Human immune re¬sponses to adeno-associated virus (AAV) vectors. 2020. 11: p. 670.
133. Riyad, J.M. and T.J.G.t. Weber, Intracellular trafficking of ade¬no-associated virus (AAV) vectors: challenges and future direc¬tions. 2021: p. 1-14.
134. Goswami, R., et al., Gene therapy leaves a vicious cycle. 2019. 9: p. 297.
135. Cavazzana, M., et al., Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. 2019. 18(6): p. 447-462.
136. Ferrari, G., A.J. Thrasher, and A.J.N.R.G. Aiuti, Gene therapy using haematopoietic stem and progenitor cells. 2021. 22(4): p. 216-234.
137. Shim, G., et al., Nonviral delivery systems for cancer gene thera¬py: strategies and challenges. 2018. 18(1): p. 3-20.
138. Mohammadinejad, R., et al., In vivo gene delivery mediated by non-viral vectors for cancer therapy. 2020. 325: p. 249-275.
139. Wang, K., et al., Protein liposomes-mediated targeted acetylcho¬linesterase gene delivery for effective liver cancer therapy. 2021. 19(1): p. 1-15.
140. Ibba, M.L., et al., Advances in mRNA non-viral delivery ap¬proaches. 2021: p. 113930.
141. Forterre, A., et al., A comprehensive review of cancer MicroRNA therapeutic delivery strategies. 2020. 12(7): p. 1852.
142. Tsekoura, E.K., et al., Delivery of Bioactive Gene Particles via Gela¬tin-Collagen-PEG-Based Electrospun Matrices. 2021. 14(7): p. 666.
143. Lara-Velazquez, M.A., et al., Chitosan-based non-viral gene and drug delivery systems for brain cancer. 2020. 11: p. 740.
144. Vakilian, H., et al., Fabrication and Optimization of Linear PEI-Modified Crystal Nanocellulose as an Efficient Non-Viral Vector for In-Vitro Gene Delivery. 2020. 9(3): p. 297.
145. Harris, E. and J.J.J.B.P. Elmer, Optimization of electroporation and other non‐viral gene delivery strategies for T cells. 2021. 37(1): p. e3066.
146. Mashel, T.V., et al., Overcoming the delivery problem for thera¬peutic genome editing: current status and perspective of non-vi¬ral methods. 2020: p. 120282.
147. Chan, T., Hydrodynamic retrograde intrabiliary injection (HRII) in small (weaned) pigs for delivery of non-viral, naked DNA vec¬tors for liver gene therapy. 2021, University of Zurich.
148. Abd Ellah, N.H., et al., Non-viral Gene Delivery. 2021: p. 1-10.
149. Scheule, R.K. and S.H. Cheng, Liposome delivery systems, in Gene therapy. 2020, Garland Science. p. 93-112.
150. Akter, S., et al., Efficient photodynamic therapy against drug-re¬sistant prostate cancer using replication-deficient virus particles and talaporfin sodium. 2021. 36(4): p. 743-750.
151. Li, W., et al., Hepatitis B virus‐related hepatocellular carcinoma in the era of antiviral therapy: The emerging role of non‐viral risk factors. 2020. 40(10): p. 2316-2325.
152. Lyu, P., L. Wang, and B.J.L. Lu, Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. 2020. 10(12): p. 366.
153. Anzalone, A.V., L.W. Koblan, and D.R.J.N.b. Liu, Genome edit¬ing with CRISPR–Cas nucleases, base editors, transposases and prime editors. 2020. 38(7): p. 824-844.
154. Zhang, J., et al., A zinc finger protein gene signature enables bladder cancer treatment stratification. 2021. 13(9): p. 13023.
155. Schulze, S. and M.J.C. Lammers, The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucle¬ases, RNA interference, and Cre/loxP. 2021. 7(1): p. 1-18.
156. Cassandri, M., et al., Zinc-finger proteins in health and disease. Cell Death Discov, 2017. 3: p. 17071.
157. Teper, D., et al., The immunity of Meiwa kumquat against Xanthomo¬nas citri is associated with a known susceptibility gene induced by a transcription activator-like effector. 2020. 16(9): p. e1008886.
158. Teper, D., et al., PthAW1, a transcription activator-like effector of Xanthomonas citri subsp. citri, promotes host specific immune responses. 2021(ja).
159. Ghaemi, A., et al., CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. 2020: p. 118969.
160. Martinez-Lage, M., et al., In vivo CRISPR/Cas9 targeting of fu¬sion oncogenes for selective elimination of cancer cells. 2020. 11(1): p. 1-14.
161. Xing, H. and L.-h.J.A.P.S. Meng, CRISPR-cas9: A powerful tool to¬wards precision medicine in cancer treatment. 2020. 41(5): p. 583-587.
162. Takeda, T., et al., A stem cell marker KLF5 regulates CCAT1 via three-dimensional genome structure in colorectal cancer cells. 2021: p. 1-11.
163. Jiang, C., et al., Application of CRISPR/Cas9 gene editing tech¬nique in the study of cancer treatment. 2020. 97(1): p. 73-88.
164. Duan, L., et al., Nanoparticle Delivery of CRISPR/Cas9 for Ge¬nome Editing. 2021. 12.
165. Walters, D.K., et al., Characterization and use of the novel hu¬man multiple myeloma cell line MC-B11/14 to study biological consequences of CRISPR-mediated loss of immunoglobulin A heavy chain. Exp Hematol, 2018. 57: p. 42-49.e1.
166. Robert, C.J.N.C., A decade of immune-checkpoint inhibitors in cancer therapy. 2020. 11(1): p. 1-3.
167. Mousazadeh, H., et al., Cyclodextrin based natural nanostruc¬tured carbohydrate polymers as effective non-viral siRNA deliv¬ery systems for cancer gene therapy. 2020.
168. Lu, Y., et al., Epigenetic regulation in human cancer: the poten¬tial role of epi-drug in cancer therapy. 2020. 19(1): p. 1-16.
169. Cossío, F.P., M. Esteller, and M.J.C.o.i.c.b. Berdasco, Towards a more precise therapy in cancer: Exploring epigenetic complexity. 2020. 57: p. 41-49.
170. Ganesan, A., et al., The timeline of epigenetic drug discovery: from reality to dreams. 2019. 11(1): p. 1-17.
2. Teixeira, F.J., et al., Whey protein in cancer therapy: a narrative review. 2019. 144: p. 245-256.
3. Lever, J., et al., CancerMine: a literature-mined resource for driv¬ers, oncogenes and tumor suppressors in cancer. Nat Methods, 2019. 16(6): p. 505-507.
4. McLean, L., et al., Immunotherapy in oncogene addicted non-small cell lung cancer. 2021. 10(6): p. 2736.
5. Tu, S.-M.J.C., Stem Cell Theory of Cancer: Implications of a Viral Etiology in Certain Malignancies. 2021. 13(11): p. 2738.
6. Pala, L., et al., Course of Sars-CoV2 infection in patients with cancer treated with anti-PD-1: A case presentation and review of the literature. 2021. 39(1): p. 9-14.
7. Kontomanolis, E.N., et al., Role of Oncogenes and Tumor-suppres¬sor Genes in Carcinogenesis: A Review. 2020. 40(11): p. 6009-6015.
8. Ouafidi, B., et al., Diagnosis and management of a spontaneous heterotopic pregnancy: Rare case report. 2021. 84: p. 106184.
9. Jan, R.J.A.p.b., Understanding apoptosis and apoptotic pathways targeted cancer therapeutics. 2019. 9(2): p. 205.
10. Chen, L., et al., Regulating tumor suppressor genes: post-transla¬tional modifications. 2020. 5(1): p. 1-25.
11. Huang, A.Z., A. Delaidelli, and P.H.J.A.n.c. Sorensen, RNA mod¬ifications in brain tumorigenesis. 2020. 8(1): p. 1-13.
12. Sun, Y., et al., Downregulation of miRNA-205 Expression and Bi¬ological Mechanism in Prostate Cancer Tumorigenesis and Bone Metastasis. 2020. 2020.
13. Schrock, M.S., et al. APC/C ubiquitin ligase: Functions and mechanisms in tumorigenesis. in Seminars in cancer biology. 2020. Elsevier.
14. Kirtonia, A., et al., The multifaceted role of reactive oxygen spe¬cies in tumorigenesis. 2020: p. 1-25.
15. Gaglia, M.M. and K.J.C.o.i.v. Munger, More than just oncogenes: mechanisms of tumorigenesis by human viruses. 2018. 32: p. 48-59.
16. Jia, Q., et al., Oncogenic super-enhancer formation in tumori¬genesis and its molecular mechanisms. 2020. 52(5): p. 713-723.
17. Perillo, B., et al., ROS in cancer therapy: The bright side of the moon. 2020. 52(2): p. 192-203.
18. Brennan, A., et al., Selective antagonism of cJun for cancer ther¬apy. 2020. 39(1): p. 1-16.
19. Yuan, J., et al., The MAPK and AMPK signalings: interplay and implication in targeted cancer therapy. 2020. 13(1): p. 1-19.
20. Ferrara, M.G., et al., Oncogene-addicted non-small-cell lung cancer: Treatment opportunities and future perspectives. 2020. 12(5): p. 1196.
21. Wang, F., P.B. SJ, and W.J.L.R. Qiu, Novel oncogenes and tumor suppressor genes in hepatocellular carcinoma☆. 2021.
22. Buscail, L., B. Bournet, and P. Cordelier, Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat Rev Gastroenterol Hepatol, 2020. 17(3): p. 153-168.
23. Westermarck, J. and B.G.J.C. Neel, Piecing together a broken tumor suppressor phosphatase for cancer therapy. 2020. 181(3): p. 514-517.
24. Yang, H., et al., Systematic analysis of aberrant biochemical net¬works and potential drug vulnerabilities induced by tumor suppres¬sor loss in malignant pleural mesothelioma. 2020. 12(8): p. 2310.
25. Gao, L., et al., Overcoming anti-cancer drug resistance via res¬toration of tumor suppressor gene function. Drug Resist Updat, 2021. 57: p. 100770.
26. Goshu, B.T., Molecular biology for cancer therapy: Review arti¬cles. 2021.
27. Lipsick, J.J.C.S.H.p.i.b., A history of cancer research: Tumor sup¬pressor genes. 2020. 12(2): p. a035907.
28. Zhang, C., et al., Use tumor suppressor genes as biomarkers for diagnosis of non-small cell lung cancer. 2021. 11(1): p. 1-13.
29. Cheng, K., et al., Synthetic lethality across normal tissues is strongly associated with cancer risk, onset, and tumor suppressor specificity. 2021. 7(1): p. eabc2100.
30. Gregoire‐Mitha, S. and D.A.J.B. Gray, What deubiquitinating en¬zymes, oncogenes, and tumor suppressors actually do: Are current assumptions supported by patient outcomes? 2021. 43(4): p. 2000269.
31. Datta, N., et al., Tumor Suppressors Having Oncogenic Func¬tions: The Double Agents. Cells, 2020. 10(1).
32. Soletti, R.C., et al., Inhibition of pRB pathway differentially modu¬lates apoptosis in esophageal cancer cells. 2017. 10(5): p. 726-733.
33. Sprissler, R., et al., Rare tumor-normal matched whole exome sequencing identifies novel genomic pathogenic germline and somatic aberrations. 2020. 12(6): p. 1618.
34. Callen, D.F.J.b., Revisiting the identification of breast cancer tu¬mour suppressor genes defined by copy number loss of the long arm of chromosome 16. 2021.
35. Zhao, X., et al., Combinatorial CRISPR/Cas9 Screening Reveals Epistatic Networks of Interacting Tumor Suppressor Genes and Therapeutic Targets in Human Breast Cancer. 2021.
36. Xia, X., et al., Bacteria pathogens drive host colonic epithelial cell promoter hypermethylation of tumor suppressor genes in colorectal cancer. 2020. 8(1): p. 1-13.
37. Haridhasapavalan, K.K., P.K. Sundaravadivelu, and R.P.J.M.B. Thummer, Codon optimization, cloning, expression, purifica¬tion, and secondary structure determination of human ETS2 transcription factor. 2020. 62(10): p. 485-494.
38. van Belzen, I.A., et al., Systematic discovery of gene fusions in pediatric cancer by integrating RNA-seq and WGS. 2021.
39. Amiri, V., et al., Transcription analysis of a histones modifiers panel coupled with critical tumor suppressor genes displayed fre¬quent changes in patients with AML.: mRNA levels of histones modifiers and TSGs in AML. 2021. 69(4): p. 103311.
40. Fatma, H., H.R. Siddique, and S.K.J.E. Maurya, The multiple fac¬es of NANOG in cancer: a therapeutic target to chemosensitize therapy-resistant cancers. 2021(0).
41. Sanaei, M. and F.J.A.P.J.o.C.P. Kavoosi, Effect of Valproic Acid on the Class I Histone Deacetylase 1, 2 and 3, Tumor Suppressor Genes p21WAF1/CIP1 and p53, and Intrinsic Mitochondrial Ap¬optotic Pathway, Pro-(Bax, Bak, and Bim) and anti-(Bcl-2, Bcl-xL, and Mcl-1) Apoptotic Genes Expression, Cell Viability, and Ap¬optosis Induction in Hepatocellular Carcinoma HepG2 Cell Line. 2021. 22(S1): p. 89-95.
42. Andrysik, Z., et al., Multi-omics analysis reveals contextual tu¬mor suppressive and oncogenic gene modules within the acute hypoxic response. 2021. 12(1): p. 1-18.
43. Tottone, L., et al., A Tumor Suppressor Enhancer of PTEN in T-cell development and leukemia. 2021. 2(1): p. 92.
44. Nagaraju, G.P., et al. Epigenetics in hepatocellular carcinoma. in Seminars in Cancer Biology. 2021. Elsevier.
45. Chen, Y., et al., Identifying Key Genes for Nasopharyngeal Car¬cinoma by Prioritized Consensus Differentially Expressed Genes Caused by Aberrant Methylation. 2021. 12(3): p. 874.
46. Kaufman-Szymczyk, A. and K.J.A.B.P. Lubecka, The effects of clofarabine in ALL inhibition through DNA methylation regula¬tion. 2020. 67(1): p. 65-72.
47. Hosseini Sarani, N., et al., Mini-review: the p53 gene as a bona fide tumor suppressor gene in human skin cancers. 2021. 24(2): p. 132-138.
48. Wee, Y., Y. Liu, and M.J.P. Zhao, Identification of consistent post-translational regulatory triplets related to oncogenic and tu¬mour suppressive modulators in childhood acute lymphoblastic leukemia. 2021. 9: p. e11803.
49. Witek, Ł., et al., Analysis of microRNA regulating cell cycle-re¬lated tumor suppressor genes in endometrial cancer patients. Hum Cell, 2021. 34(2): p. 564-569.
50. Wu, F., et al., Sirtuin 7 super-enhancer drives epigenomic repro¬gramming in hepatocarcinogenesis. 2021.
51. Lee, D.Y., et al., Oncogenic orphan nuclear receptor NR4A3 in¬teracts and cooperates with MYB in acinic cell carcinoma. 2020. 12(9): p. 2433.
52. Liu, Z., et al., Systematic analysis of the aberrances and function¬al implications of ferroptosis in cancer. 2020. 23(7): p. 101302.
53. Singh, S., et al., Demethylation of Tumor Suppressor Genes In Leukemia By Using Natural Compounds. 2020. 12(5): p. 1-8.
54. Zhang, W., et al., CMV Status Drives Distinct Trajectories of CD4+ T Cell Differentiation. 2021. 12: p. 1163.
55. Abdullah, O., et al., Thymoquinone Is a Multitarget Single Epidrug That Inhibits the UHRF1 Protein Complex. 2021. 12(5): p. 622.
56. Ou, M., et al., Single-cell sequencing reveals the potential onco¬genic expression atlas of human iPSC-derived cardiomyocytes. 2021. 10(2): p. bio053348.
57. Vydra, N., et al., 17β-estradiol activates HSF1 via MAPK signal¬ing in ERα-positive breast cancer cells. 2019. 11(10): p. 1533.
58. Miallot, R., et al., Metabolic landscapes in sarcomas. 2021. 14(1): p. 1-23.
59. Bhyan, S.B., et al., Exploring the role of post-translational mod¬ulators of transcription factors in triple-negative breast cancer gene expression. 2020. 24: p. 100681.
60. Supper, E., et al., Cut-like homeobox 1 (CUX1) tumor suppressor gene haploinsufficiency induces apoptosis evasion to sustain my-eloid leukemia. 2021. 12(1): p. 1-20.
61. Sanaei, M., et al., DNA methylation of tumor suppressor genes in hepatocellular carcinoma. 2020.
62. Sekulovski, N., et al., Niclosamide’s potential direct targets in ovarian cancer. 2021.
63. Patel, R.R., et al., Tumor mutational burden and driver muta¬ tions: Characterizing the genomic landscape of pediatric brain tumors. 2020. 67(7): p. e28338.
64. Jansen, A.M., et al., Novel candidates in early-onset familial colorectal cancer. 2020. 19(1): p. 1-10.
65. Datta, N., et al., Tumor Suppressors Having Oncogenic Func¬tions: The Double Agents. 2021. 10(1): p. 46.
66. Sreedurgalakshmi, K., R. Srikar, and R.J.C.G.T. Rajkumari, CRISPR-Cas deployment in non-small cell lung cancer for target screening, validations, and discoveries. 2020: p. 1-15.
67. Martin, T.D., et al., The adaptive immune system is a major driv¬er of selection for tumor suppressor gene inactivation. 2021. 373(6561): p. 1327-1335.
68. Lao, T.D., T.N. Nguyen, and T.A.H.J.D. Le, Promoter Hypermeth¬ylation of Tumor Suppressor Genes Located on Short Arm of the Chromosome 3 as Potential Biomarker for the Diagnosis of Na¬sopharyngeal Carcinoma. 2021. 11(8): p. 1404.
69. Dhawan, A., et al., Pan-cancer characterisation of microRNA across cancer hallmarks reveals microRNA-mediated downreg¬ulation of tumour suppressors. 2018. 9(1): p. 1-13.
70. Rifaï, K., et al., Breaking down the contradictory roles of histone deacetylase SIRT1 in human breast cancer. 2018. 10(11): p. 409.
71. Vélez-Reyes, G.L., et al., Transposon Mutagenesis-Guided CRIS¬PR/Cas9 Screening Strongly Implicates Dysregulation of Hippo/ YAP Signaling in Malignant Peripheral Nerve Sheath Tumor De¬velopment. 2021. 13(7): p. 1584.
72. Li, Z., et al., The OncoPPi network of cancer-focused protein– protein interactions to inform biological insights and therapeutic strategies. 2017. 8(1): p. 1-14.
73. Laaniste, L., et al., Integrated systems‐genetic analyses reveal a net¬work target for delaying glioma progression. 2019. 6(9): p. 1616-1638.
74. Kodama, M., et al., Sleeping Beauty transposon mutagenesis identifies genes driving the initiation and metastasis of uterine leiomyosarcoma. 2021. 81(21): p. 5413-5424.
75. Hsiao, T.-F., et al., Integrative omics analysis reveals soluble cad¬herin-3 as a survival predictor and.
76. Xia, M., et al., Noncoding RNAs in triple negative breast cancer: Mechanisms for chemoresistance. 2021.
77. Liang, Y., et al., Reactivation of tumour suppressor in breast can¬cer by enhancer switching through NamiRNA network. 2021. 49(15): p. 8556-8572.
78. Singh, N.P., P.J.M.G. Vinod, and Genomics, Integrative analysis of DNA methylation and gene expression in papillary renal cell carcinoma. 2020. 295(3).
79. Terkelsen, T., et al., Secreted breast tumor interstitial fluid mi¬croRNAs and their target genes are associated with triple-nega¬tive breast cancer, tumor grade, and immune infiltration. 2020. 22(1): p. 1-36.
80. Mishra, R.K., et al., Understanding the Monoclonal Antibody Involvement in Targeting the Activation of Tumor Suppressor Genes. 2020. 20(20): p. 1810-1823.
81. EAR, E.N.S., A.A. Irekeola, and C.J.D. Yean Yean, Diagnostic and prognostic indications of nasopharyngeal carcinoma. 2020. 10(9): p. 611.
82. Fernandes, R.C., et al., MicroRNA-194 promotes lineage plastici¬ty in advanced prostate cancer. 2019: p. 752709.
83. Fernandes, R.C., et al., Post-transcriptional gene regulation by microrna-194 promotes neuroendocrine transdifferentiation in prostate cancer. 2021. 34(1): p. 108585.
84. Li, B., Q. Huang, and G.-H.J.C. Wei, The role of HOX transcription factors in cancer predisposition and progression. 2019. 11(4): p. 528.
85. Ghasemi, S., et al., Epigenetic targeting of cancer stem cells by polyphenols (cancer stem cells targeting). 2021.
86. Mondal, P., et al. Progress and Promises of Epigenetic Drugs and Epigenetic Diets in Cancer Prevention and Therapy: A Clinical Update. in Seminars in Cancer Biology. 2020. Elsevier.
87. Fardi, M., et al., Epigenetic mechanisms as a new approach in cancer treatment: An updated review. 2018. 5(4): p. 304-311.
88. Tang, S., et al., MicroRNAs: Emerging oncogenic and tumor-sup¬pressive regulators, biomarkers and therapeutic targets in lung cancer. 2021. 502: p. 71-83.
89. Prazak, L., et al., A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. 2021. 32(21): p. ar26.
90. Li, X., et al., The dual role of STAT1 in ovarian cancer: insight into molecular mechanisms and application potentials. 2021. 9.
91. Otálora Otálora, B.A., et al., RUNX family: Oncogenes or tumor suppressors. 2019. 42(1): p. 3-19.
92. Hsiue, E.H.-C., et al., Targeting a neoantigen derived from a com¬mon TP53 mutation. 2021. 371(6533).
93. Schmidt, A.-K., et al., The p53/p73-p21 CIP1 tumor suppressor axis guards against chromosomal instability by restraining CDK1 in human cancer cells. 2021. 40(2): p. 436-451.
94. Kuo, K.K., et al., Therapeutic Strategies Targeting Tumor Suppres¬sor Genes in Pancreatic Cancer. Cancers (Basel), 2021. 13(15).
95. Strasser, A. and D.L.J.M.C. Vaux, Cell death in the origin and treatment of cancer. 2020. 78(6): p. 1045-1054.
96. Sharma, S. and K.J.M. Munger, Expression of the long noncod¬ing RNA DINO in human papillomavirus-positive cervical can¬cer cells reactivates the dormant TP53 tumor suppressor through ATM/CHK2 signaling. 2020. 11(3): p. e01190-20.
97. Kim, A., et al., Integrative Genomic and Transcriptomic Analyses of Tumor Suppressor Genes and Their Role on Tumor Microen-vironment and Immunity in Lung Squamous Cell Carcinoma. Front Immunol, 2021. 12: p. 598671.
98. Hughley, R., et al., Etiologic index—A case-only measure of BRCA1/2–associated cancer risk. 2020. 383(3): p. 286-288.
99. Eozenou, C., et al., Testis formation in XX individuals resulting from novel pathogenic variants in Wilms’ tumor 1 (WT1) gene. 2020. 117(24): p. 13680-13688.
100. Weiss, A.C., et al., Expansion of the renal capsular stroma, ure¬teric bud branching defects and cryptorchidism in mice with W ilms tumor 1 gene deletion in the stromal compartment of the developing kidney. 2020. 252(3): p. 290-303.
101. Goel, H., et al., Molecular update on biology of Wilms Tumor 1 gene and its applications in acute myeloid leukemia. 2020. 10(5): p. 151.
102. Maciaszek, J.L., N. Oak, and K.E.J.H.m.g. Nichols, Recent advanc¬es in Wilms’ tumor predisposition. 2020. 29(R2): p. R138-R149.
103. Piombino, E., et al., Wilms’ Tumor 1 (WT1): A Novel Immu¬nomarker of Dermatofibrosarcoma Protuberans—An Immuno-histochemical Study on a Series of 114 Cases of Bland-Looking Mesenchymal Spindle Cell Lesions of the Dermis/Subcutaneous Tissues. 2021. 13(2): p. 252.
104. Zhang, M., et al., Origins of nonsense mutations in human tumor suppressor genes. 2021. 823: p. 111761.
105. Pareja, F., C. Marchiò, and J.S.J.D.H. Reis-Filho, Molecular diag¬nosis in breast cancer. 2018. 24(2): p. 71-82.
106. Imran, A., et al., Role of molecular biology in cancer treatment: A review article. 2017. 46(11): p. 1475.
107. Wang, X.-J., et al., Recent advances in natural therapeutic ap¬proaches for the treatment of cancer. 2020. 32(2): p. 53-65.
108. Liu, H., et al., Delivery of the Bioactive Component Paeonol by Dual pH‐Responsive Nanoparticles Enhances Anti‐Metastatic Tumor Efficiency. 2021. 7(1): p. 50-60.
109. Yang, L., et al., Targeting cancer stem cell pathways for cancer therapy. 2020. 5(1): p. 1-35.
110. Zhang, Q., et al., The role and specific mechanism of OCT4 in cancer stem cells: a review. 2020. 13(3): p. 312.
111. Chen, G., et al., Hypoxia induces an endometrial cancer stem-like cell phenotype via HIF-dependent demethylation of SOX2 mRNA. 2020. 9(9): p. 1-14.
112. Liu, S., et al., Methylation status of the Nanog promoter deter¬mines the switch between cancer cells and cancer stem cells. 2020. 7(5): p. 1903035.
113. Jin, X., et al., OCT4 Suppresses Metastasis in Breast Cancer Cells Through Activation of STAT3 Signaling. 2020.
114. Wang, S., et al., Caveolin-1 inhibits breast cancer stem cells via c-Myc-mediated metabolic reprogramming. 2020. 11(6): p. 1-16.
115. Fendler, A., et al., Inhibiting WNT and NOTCH in renal cancer stem cells and the implications for human patients. 2020. 11(1): p. 1-16.
116. Zhang, X., et al., Arsenic trioxide induces differentiation of can¬cer stem cells in hepatocellular carcinoma through inhibition of LIF/JAK1/STAT3 and NF‐kB signaling pathways synergistically. 2021. 11(2): p. e335.
117. .Sneha, S., et al., The hedgehog pathway regulates cancer stem cells in serous adenocarcinoma of the ovary. 2020. 43(4): p. 601-616.
118. Seeneevassen, L., et al., Leukaemia Inhibitory Factor (LIF) In¬hibits Cancer Stem Cells Tumorigenic Properties through Hippo Kinases Activation in Gastric Cancer. 2020. 12(8): p. 2011.
119. Cui, J., et al., Natural Products Targeting Cancer Stem Cells: A Revisit. 2021.
120. Yan, G., et al., TGFβ/cyclin D1/Smad-mediated inhibition of BMP4 promotes breast cancer stem cell self-renewal activity. 2021. 10(3): p. 1-14.
121. Chen, S.Z., et al., 4‐phenylbutyric acid promotes hepatocellular carcinoma via initiating cancer stem cells through activation of PPAR‐α. 2021. 11(4): p. e379.
122. Gaudelli, N.M., et al., Programmable base editing of A•T to G•C in genomic DNA without DNA cleavage. Nature, 2017. 551(7681): p. 464-471.
123. Dunbar, C.E., et al., Gene therapy comes of age. 2018. 359(6372).
124. Golubeva, T.S., V.A. Cherenko, and K.E. Orishchenko, Recent Ad¬vances in the Development of Exogenous dsRNA for the Induction of RNA Interference in Cancer Therapy. Molecules, 2021. 26(3).
125. Ghosh, S., et al., Viral vector systems for gene therapy: a com¬prehensive literature review of progress and biosafety challenges. 2020. 25(1): p. 7-18.
126. Eisenman, D., S. Debold, and J.J.A.B. Riddle, A Changing World in Gene Therapy Research: Exciting Opportunities for Medical Advancement and Biosafety Challenges. 2021.
127. Brown, A.M., et al., Safeguards for Using Viral Vector Systems in Human Gene Therapy: A Resource for Biosafety Professionals Mitigating Risks in Health Care Settings. 2020. 25(4): p. 184-193.
128. Levine, B.L., et al., Global Manufacturing of CAR T Cell Therapy. Mol Ther Methods Clin Dev, 2017. 4: p. 92-101.
129. Lundstrom, K., RNA Viruses as Tools in Gene Therapy and Vac¬cine Development. Genes (Basel), 2019. 10(3).
130. Milone, M.C. and U. O’Doherty, Clinical use of lentiviral vectors. Leukemia, 2018. 32(7): p. 1529-1541.
131. Lee, C.S., et al., Adenovirus-Mediated Gene Delivery: Potential Applications for Gene and Cell-Based Therapies in the New Era of Personalized Medicine. Genes Dis, 2017. 4(2): p. 43-63.
132. Ronzitti, G., D.-A. Gross, and F.J.F.i.i. Mingozzi, Human immune re¬sponses to adeno-associated virus (AAV) vectors. 2020. 11: p. 670.
133. Riyad, J.M. and T.J.G.t. Weber, Intracellular trafficking of ade¬no-associated virus (AAV) vectors: challenges and future direc¬tions. 2021: p. 1-14.
134. Goswami, R., et al., Gene therapy leaves a vicious cycle. 2019. 9: p. 297.
135. Cavazzana, M., et al., Gene therapy targeting haematopoietic stem cells for inherited diseases: progress and challenges. 2019. 18(6): p. 447-462.
136. Ferrari, G., A.J. Thrasher, and A.J.N.R.G. Aiuti, Gene therapy using haematopoietic stem and progenitor cells. 2021. 22(4): p. 216-234.
137. Shim, G., et al., Nonviral delivery systems for cancer gene thera¬py: strategies and challenges. 2018. 18(1): p. 3-20.
138. Mohammadinejad, R., et al., In vivo gene delivery mediated by non-viral vectors for cancer therapy. 2020. 325: p. 249-275.
139. Wang, K., et al., Protein liposomes-mediated targeted acetylcho¬linesterase gene delivery for effective liver cancer therapy. 2021. 19(1): p. 1-15.
140. Ibba, M.L., et al., Advances in mRNA non-viral delivery ap¬proaches. 2021: p. 113930.
141. Forterre, A., et al., A comprehensive review of cancer MicroRNA therapeutic delivery strategies. 2020. 12(7): p. 1852.
142. Tsekoura, E.K., et al., Delivery of Bioactive Gene Particles via Gela¬tin-Collagen-PEG-Based Electrospun Matrices. 2021. 14(7): p. 666.
143. Lara-Velazquez, M.A., et al., Chitosan-based non-viral gene and drug delivery systems for brain cancer. 2020. 11: p. 740.
144. Vakilian, H., et al., Fabrication and Optimization of Linear PEI-Modified Crystal Nanocellulose as an Efficient Non-Viral Vector for In-Vitro Gene Delivery. 2020. 9(3): p. 297.
145. Harris, E. and J.J.J.B.P. Elmer, Optimization of electroporation and other non‐viral gene delivery strategies for T cells. 2021. 37(1): p. e3066.
146. Mashel, T.V., et al., Overcoming the delivery problem for thera¬peutic genome editing: current status and perspective of non-vi¬ral methods. 2020: p. 120282.
147. Chan, T., Hydrodynamic retrograde intrabiliary injection (HRII) in small (weaned) pigs for delivery of non-viral, naked DNA vec¬tors for liver gene therapy. 2021, University of Zurich.
148. Abd Ellah, N.H., et al., Non-viral Gene Delivery. 2021: p. 1-10.
149. Scheule, R.K. and S.H. Cheng, Liposome delivery systems, in Gene therapy. 2020, Garland Science. p. 93-112.
150. Akter, S., et al., Efficient photodynamic therapy against drug-re¬sistant prostate cancer using replication-deficient virus particles and talaporfin sodium. 2021. 36(4): p. 743-750.
151. Li, W., et al., Hepatitis B virus‐related hepatocellular carcinoma in the era of antiviral therapy: The emerging role of non‐viral risk factors. 2020. 40(10): p. 2316-2325.
152. Lyu, P., L. Wang, and B.J.L. Lu, Virus-like particle mediated CRISPR/Cas9 delivery for efficient and safe genome editing. 2020. 10(12): p. 366.
153. Anzalone, A.V., L.W. Koblan, and D.R.J.N.b. Liu, Genome edit¬ing with CRISPR–Cas nucleases, base editors, transposases and prime editors. 2020. 38(7): p. 824-844.
154. Zhang, J., et al., A zinc finger protein gene signature enables bladder cancer treatment stratification. 2021. 13(9): p. 13023.
155. Schulze, S. and M.J.C. Lammers, The development of genome editing tools as powerful techniques with versatile applications in biotechnology and medicine: CRISPR/Cas9, ZnF and TALE nucle¬ases, RNA interference, and Cre/loxP. 2021. 7(1): p. 1-18.
156. Cassandri, M., et al., Zinc-finger proteins in health and disease. Cell Death Discov, 2017. 3: p. 17071.
157. Teper, D., et al., The immunity of Meiwa kumquat against Xanthomo¬nas citri is associated with a known susceptibility gene induced by a transcription activator-like effector. 2020. 16(9): p. e1008886.
158. Teper, D., et al., PthAW1, a transcription activator-like effector of Xanthomonas citri subsp. citri, promotes host specific immune responses. 2021(ja).
159. Ghaemi, A., et al., CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. 2020: p. 118969.
160. Martinez-Lage, M., et al., In vivo CRISPR/Cas9 targeting of fu¬sion oncogenes for selective elimination of cancer cells. 2020. 11(1): p. 1-14.
161. Xing, H. and L.-h.J.A.P.S. Meng, CRISPR-cas9: A powerful tool to¬wards precision medicine in cancer treatment. 2020. 41(5): p. 583-587.
162. Takeda, T., et al., A stem cell marker KLF5 regulates CCAT1 via three-dimensional genome structure in colorectal cancer cells. 2021: p. 1-11.
163. Jiang, C., et al., Application of CRISPR/Cas9 gene editing tech¬nique in the study of cancer treatment. 2020. 97(1): p. 73-88.
164. Duan, L., et al., Nanoparticle Delivery of CRISPR/Cas9 for Ge¬nome Editing. 2021. 12.
165. Walters, D.K., et al., Characterization and use of the novel hu¬man multiple myeloma cell line MC-B11/14 to study biological consequences of CRISPR-mediated loss of immunoglobulin A heavy chain. Exp Hematol, 2018. 57: p. 42-49.e1.
166. Robert, C.J.N.C., A decade of immune-checkpoint inhibitors in cancer therapy. 2020. 11(1): p. 1-3.
167. Mousazadeh, H., et al., Cyclodextrin based natural nanostruc¬tured carbohydrate polymers as effective non-viral siRNA deliv¬ery systems for cancer gene therapy. 2020.
168. Lu, Y., et al., Epigenetic regulation in human cancer: the poten¬tial role of epi-drug in cancer therapy. 2020. 19(1): p. 1-16.
169. Cossío, F.P., M. Esteller, and M.J.C.o.i.c.b. Berdasco, Towards a more precise therapy in cancer: Exploring epigenetic complexity. 2020. 57: p. 41-49.
170. Ganesan, A., et al., The timeline of epigenetic drug discovery: from reality to dreams. 2019. 11(1): p. 1-17.
Files | ||
Issue | Vol 13 No 2 (2021) | |
Section | Reviews | |
DOI | https://doi.org/10.18502/bccr.v13i2.10024 | |
Keywords | ||
Cancer Oncogens Molecular biology Brain tumor |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Abdolmaleki A, Karimian A, Asadi A, A. Ghanimi H, Akram M. Application of Novel Molecular Biology in Cancer Therapy. Basic Clin Cancer Res. 2022;13(2):92-104.