Cancer stem cell biomarkers: critical roles, challenges, clinical applications and perspectives in cancer therapy


Progress in cancer stem cells has opened up a new window to develop better cancer treatment methods. Several pre-clinical and clinical trial studies use CSCs targeting via surface markers method and inhibition of stem cell pathway to eradicate cancer. Albite, some important question was unclear about CSCs origin and molecular mechanism of self-renewal, the structure of CSCs markers and so on, but the eradication of these cells eliminate cancer. In this review, we have argued about the CSC surface markers on different cancers, the mechanisms of action, and therapeutic procedures related to the cancer biomarkers. Then, we have discussed the challenges of these therapies.
1. Chen K, Huang Y-h, Chen J-l. Understanding and targeting cancer stem cells: therapeutic implica¬tions and challenges. Acta Pharmacologica Sinica. 2013;34[6]:732-40.
2. Jayachandran A, Dhungel B, Steel JC. Epitheli¬al-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. Journal of Hematology & Oncology. 2016;9[1]:74.
3. Vicari L, Colarossi C, Giuffrida D, De Maria R, Me¬meo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma [Review]. Oncology Let¬ters. 2016;12[4]:2254-60.
4. Biserova K, Jakovlevs A, Uljanovs R, Strumfa I. Can¬cer Stem Cells: Significance in Origin, Pathogenesis and Treatment of Glioblastoma. Cells. 2021;10[3], 10.3390/cells10030621.
5. Trosko JE. On the potential origin and characteristics of cancer stem cells. Carcinogenesis. 2021;42[7]:905- 12, 10.1093/carcin/bgab042.
6. Bryan TM, Reddel RR. SV40-induced immortaliza¬tion of human cells. Crit Rev Oncog. 1994;5[4]:331- 57, 10.1615/critrevoncog.v5.i4.10.
7. Viallet J, Liu C, Emond J, Tsao MS. Characterization of human bronchial epithelial cells immortalized by the E6 and E7 genes of human papillomavirus type 16. Exp Cell Res. 1994;212[1]:36-41, 10.1006/ excr.1994.1115.
8. Upham BL, Trosko JE. Oxidative-dependent inte¬gration of signal transduction with intercellular gap junctional communication in the control of gene ex¬pression. Antioxid Redox Signal. 2009;11[2]:297-307, 10.1089/ars.2008.2146.
9. Ayob AZ, Ramasamy TS. Cancer stem cells as key drivers of tumour progression. J Biomed Sci. 2018;25[1]:20, 10.1186/s12929-018-0426-4.
10. Warren ST, Schultz RA, Chang CC, Wade MH, Trosko JE. Elevated spontaneous mutation rate in Bloom syndrome fibroblasts. Proc Natl Acad Sci U S A. 1981;78[5]:3133-7, 10.1073/pnas.78.5.3133.
11. Lobo NA, Shimono Y, Qian D, Clarke MF. The biology of cancer stem cells. Annu Rev Cell Dev Biol. 2007;23:675-99, 10.1146/annurev.cell¬bio.22.010305.104154.
12. Taipale J, Beachy PA. The Hedgehog and Wnt signal¬ling pathways in cancer. Nature. 2001;411[6835]:349- 54, 10.1038/35077219.
13. Cojoc M, Mäbert K, Muders MH, Dubrovska A. A role for cancer stem cells in therapy resistance: cellu¬lar and molecular mechanisms. Semin Cancer Biol. 2015;31:16-27, 10.1016/j.semcancer.2014.06.004.
14. Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initia¬tion. Gastroenterology. 2007;133[3]:937-50, 10.1053/j. gastro.2007.06.016.
15. Ni J, Cozzi P, Hao J, Beretov J, Chang L, Duan W, etal. Epithelial cell adhesion molecule [EpCAM] is as¬sociated with prostate cancer metastasis and chemo/ radioresistance via the PI3K/Akt/mTOR signaling pathway. The international journal of biochemistry & cell biology. 2013;45[12]:2736-48, 10.1016/¬cel.2013.09.008.
16. Liao MY, Lai JK, Kuo MY, Lu RM, Lin CW, Cheng PC, et al. An anti-EpCAM antibody EpAb2-6 for the treat¬ment of colon cancer. Oncotarget. 2015;6[28]:24947- 68, 10.18632/oncotarget.4453.
17. Wang YK, Zhu YL, Qiu FM, Zhang T, Chen ZG, Zheng S, et al. Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary co¬lon cancer cells. Carcinogenesis. 2010;31[8]:1376-80, 10.1093/carcin/bgq120.
18. Wang JY, Chang CC, Chiang CC, Chen WM, Hung SC. Silibinin suppresses the maintenance of colorec¬tal cancer stem-like cells by inhibiting PP2A/AKT/ mTOR pathways. Journal of cellular biochemistry. 2012;113[5]:1733-43, 10.1002/jcb.24043.
19. Fanali C, Lucchetti D, Farina M, Corbi M, Cufino V, Cittadini A, et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World journal of gastroenterology. 2014;20[4]:923-42, 10.3748/wjg.v20.i4.923.
20. O’Brien CA, Pollett A, Gallinger S, Dick JE. A hu¬man colon cancer cell capable of initiating tu¬mour growth in immunodeficient mice. Nature. 2007;445[7123]:106-10, 10.1038/nature05372.
21. Feng JM, Miao ZH, Jiang Y, Chen Y, Li JX, Tong LJ, et al. Characterization of the conversion between CD133+ and CD133- cells in colon cancer SW620 cell line. Cancer biology & therapy. 2012;13[14]:1396- 406, 10.4161/cbt.22000.
22. Hsu CS, Tung CY, Yang CY, Lin CH. Response to stress in early tumor colonization modulates switch¬ing of CD133-positive and CD133-negative subpopu¬lations in a human metastatic colon cancer cell line, SW620. PloS one. 2013;8[4]:e61133, 10.1371/journal. pone.0061133.
23. Wang D, Guo Y, Li Y, Li W, Zheng X, Xia H, et al. Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. Oncol Lett. 2015;9[6]:2603-8, 10.3892/ol.2015.3079.
24. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Vir¬gilio A, et al. Identification and expansion of the tum¬origenic lung cancer stem cell population. Cell death and differentiation. 2008;15[3]:504-14, 10.1038/ sj.cdd.4402283.
25. Hori Y. Prominin-1 [CD133] Reveals New Faces of Pancreatic Progenitor Cells and Cancer Stem Cells: Current Knowledge and Therapeutic Perspectives. Advances in experimental medicine and biology. 2013;777:185-96, 10.1007/978-1-4614-5894-4_12.
26. Zhou Q, Chen A, Song H, Tao J, Yang H, Zuo M. Prognostic value of cancer stem cell marker CD133 in ovarian cancer: a meta-analysis. Internation¬al journal of clinical and experimental medicine. 2015;8[3]:3080-8.
27. Mizugaki H, Sakakibara-Konishi J, Kikuchi J, Moriya J, Hatanaka KC, Kikuchi E, et al. CD133 expression: a potential prognostic marker for non-small cell lung cancers. International journal of clinical oncology. 2014;19[2]:254-9, 10.1007/s10147-013-0541-x.
28. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, et al. CD133/prominin-1 is a poten¬tial therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008;99[1]:100-9, 10.1038/sj.bjc.6604437.
29. Deng Y, Su Q, Mo J, Fu X, Zhang Y, Lin EH. Cel¬ecoxib downregulates CD133 expression through inhibition of the Wnt signaling pathway in colon cancer cells. Cancer investigation. 2013;31[2]:97-102, 10.3109/07357907.2012.754458.
30. Deng YH, Pu XX, Huang MJ, Xiao J, Zhou JM, Lin TY, et al. 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells. Chinese journal of cancer. 2010;29[9]:810-5.
31. Takahashi RU, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Frontiers in genetics. 2014;4:295, 10.3389/ fgene.2013.00295.
32. Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, et al. Poly[lactic-co-glycolic acid] nanoparticles conjugated with CD133 aptamers for targeted sali¬nomycin delivery to CD133+ osteosarcoma cancer stem cells. International journal of nanomedicine. 2015;10:2537-54, 10.2147/ijn.s78498.
33. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde de¬hydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7[10]:11018-32, 10.18632/oncotarget.6920.
34. Lohberger B, Rinner B, Stuendl N, Absenger M, Liegl-Atzwanger B, Walzer SM, et al. Aldehyde de¬hydrogenase 1, a potential marker for cancer stem cells in human sarcoma. PloS one. 2012;7[8]:e43664, 10.1371/journal.pone.0043664.
35. Deonarain MP, Kousparou CA, Epenetos AA. Anti¬bodies targeting cancer stem cells: a new paradigm in immunotherapy? mAbs. 2009;1[1]:12-25.
36. Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. The Journal of clinical investigation. 2014;124[12]:5453- 65, 10.1172/jci76611.
37. Kim RJ, Park JR, Roh KJ, Choi AR, Kim SR, Kim PH, et al. High aldehyde dehydrogenase activity enhanc¬es stem cell features in breast cancer cells by activat¬ing hypoxia-inducible factor-2alpha. Cancer letters. 2013;333[1]:18-31, 10.1016/j.canlet.2012.11.026.
38. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of nor¬mal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell stem cell. 2007;1[5]:555-67, 10.1016/j.stem.2007.08.014.
39. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 [ALDH1], in human epithelial cancers. PloS one. 2010;5[4]:e10277, 10.1371/journal.pone.0010277.
40. Tanaka K, Tomita H, Hisamatsu K, Nakashima T, Hatano Y, Sasaki Y, et al. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma. Oncotarget. 2015;6[28]:24722-32, 10.18632/oncotar¬get.4406.
41. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. Prognostic significance of tumori¬genic cells with mesenchymal features in pancreatic adenocarcinoma. Journal of the National Cancer In¬stitute. 2010;102[5]:340-51, 10.1093/jnci/djp535.
42. Kahlert C, Bergmann F, Beck J, Welsch T, Mogler C, Herpel E, et al. Low expression of aldehyde dehy¬drogenase 1A1 [ALDH1A1] is a prognostic marker for poor survival in pancreatic cancer. BMC cancer. 2011;11:275, 10.1186/1471-2407-11-275.
43. Buishand FO, Arkesteijn GJ, Feenstra LR, Oorsprong CW, Mestemaker M, Starke A, et al. Identification of CD90 as Putative Cancer Stem Cell Marker and Ther¬apeutic Target in Insulinomas. Stem cells and devel¬opment. 2016;25[11]:826-35, 10.1089/scd.2016.0032.
44. Lobba ARM, Forni MF, Carreira ACO, Sogayar MC. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cy¬tometry Part A. 2012;81A[12]:1084-91, 10.1002/cy¬to.a.22220.
45. Ishiura Y, Kotani N, Yamashita R, Yamamoto H, Kozutsumi Y, Honke K. Anomalous expression of Thy1 [CD90] in B-cell lymphoma cells and prolifera¬tion inhibition by anti-Thy1 antibody treatment. Bio¬chemical and biophysical research communications. 2010;396[2]:329-34, 10.1016/j.bbrc.2010.04.092.
46. Fujita N, Kato Y, Naito M, Tsuruo T. A novel an¬ti-Thy-1 [CD90] monoclonal antibody induces apop¬tosis in mouse malignant T-lymphoma cells in spite of inducing bcl-2 expression. International journal of cancer. 1996;66[4]:544-50, 10.1002/[sici]1097- 0215[19960516]66:4<544::aid-ijc20>;2-6.
47. Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. FASEB journal : official publication of the Federa¬tion of American Societies for Experimental Biology. 2006;20[8]:1045-54, 10.1096/fj.05-5460rev.
48. Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Molecular cancer research : MCR. 2011;9[12]:1573- 86, 10.1158/1541-7786.mcr-11-0156
49. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, et al. Growth-inhibitory and tumor- sup¬pressive functions of p53 depend on its repression of CD44 expression. Cell. 2008;134[1]:62-73, 10.1016/j. cell.2008.06.006.
50. Li J, Zhou BP. Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC cancer. 2011;11:49, 10.1186/1471-2407-11-49.
51. Yan Y, Zuo X, Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomark¬er and Therapeutic Target. Stem cells translational medicine. 2015;4[9]:1033-43, 10.5966/sctm.2015- 0048.
52. Afify A, Purnell P, Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Experimental and molec¬ular pathology. 2009;86[2]:95-100, 10.1016/j.yex¬mp.2008.12.003.
53. Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clinical & developmental immunology. 2012;2012:708036, 10.1155/2012/708036.
54. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroR¬NA-199a targets CD44 to suppress the tumorigenic¬ity and multidrug resistance of ovarian cancer-initi¬ating cells. The FEBS journal. 2012;279[11]:2047-59, 10.1111/j.1742-4658.2012.08589.x.
55. Misra S, Ghatak S, Zoltan-Jones A, Toole BP. Reg¬ulation of multidrug resistance in cancer cells by hyaluronan. The Journal of biological chemistry. 2003;278[28]:25285-8, 10.1074/jbc.C300173200.
56. Yang XR, Xu Y, Yu B, Zhou J, Li JC, Qiu SJ, et al. CD24 is a novel predictor for poor prognosis of hepa¬tocellular carcinoma after surgery. Clinical cancer research : an official journal of the American Asso¬ciation for Cancer Research. 2009;15[17]:5518-27, 10.1158/1078-0432.ccr-09-0151.
57. Wang W, Wang X, Peng L, Deng Q, Liang Y, Qing H, et al. CD24-dependent MAPK pathway activa¬tion is required for colorectal cancer cell prolifera¬tion. Cancer Sci. 2010;101[1]:112-9, 10.1111/j.1349- 7006.2009.01370.x.
58. Meyer MJ, Fleming JM, Ali MA, Pesesky MW, Gins¬burg E, Vonderhaar BK. Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast cancer research : BCR. 2009;11[6]:R82, 10.1186/bcr2449.
59. Hosonaga M, Arima Y, Sugihara E, Kohno N, Saya H. Expression of CD24 is associated with HER2 expres¬sion and supports HER2-Akt signaling in HER2-pos¬itive breast cancer cells. Cancer Sci. 2014;105[7]:779- 87, 10.1111/cas.12427.
60. Rostoker R, Jayaprakash AD, Sachidanandam R, LeRoith D. Deep sequencing of mRNA in CD24[- ] and CD24[+] mammary carcinoma Mvt1 cell line. Genomics data. 2015;5:399-401, 10.1016/j.gda¬ta.2015.06.032.
61. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 sig¬naling pathway is required for growth of CD44[+] CD24[-] stem cell-like breast cancer cells in hu¬man tumors. The Journal of clinical investigation. 2011;121[7]:2723-35, 10.1172/jci44745.
62. Tanaka H, Nakamura M, Kameda C, Kubo M, Sato N, Kuroki S, et al. The Hedgehog signaling path¬way plays an essential role in maintaining the CD44+CD24-/low subpopulation and the side pop¬ulation of breast cancer cells. Anticancer research. 2009;29[6]:2147-57.
63. Cirenajwis H, Smiljanic S, Honeth G, Hegardt C, Marton LJ, Oredsson SM. Reduction of the putative CD44+CD24- breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anticancer drugs. 2010;21[10]:897-906, 10.1097/CAD.0b013e32833f2f77.
64. Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, et al. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer immunology, im¬munotherapy : CII. 2009;58[8]:1185-94, 10.1007/ s00262-008-0623-1.
65. Ju JH, Jang K, Lee KM, Kim M, Kim J, Yi JY, et al. CD24 enhances DNA damage-induced apoptosisby modulating NF-kappaB signaling in CD44-ex¬pressing breast cancer cells. Carcinogenesis. 2011;32[10]:1474-83, 10.1093/carcin/bgr173.
66. Okada T, Nakamura T, Watanabe T, Onoda N, Ashida A, Okuyama R, et al. Coexpression of EpCAM, CD44 variant isoforms and claudin-7 in anaplastic thyroid carcinoma. PloS one. 2014;9[4]:e94487, 10.1371/jour-nal.pone.0094487.
67. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorec¬tal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2007;104[24]:10158-63, 10.1073/pnas.0703478104.
68. Kuhn S, Koch M, Nubel T, Ladwein M, Antolovic D, Klingbeil P, et al. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Molecular cancer re¬search : MCR. 2007;5[6]:553-67, 10.1158/1541-7786. mcr-06-0384.
69. Wang M, Xiao J, Shen M, Yahong Y, Tian R, Zhu F, et al. Isolation and characterization of tumorigenic extrahepatic cholangiocarcinoma cells with stem cell-like properties. International journal of cancer. 2011;128[1]:72-81, 10.1002/ijc.25317.
70. Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pan¬creatic cancer cells. Cancer letters. 2011;307[1]:26-36, 10.1016/j.canlet.2011.03.012.
71. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, et al. Prostate stem cell antigen: A cell surface marker overexpressed in prostate cancer. Proceedings of the National Academy of Sciences. 1998;95[4]:1735-40, 10.1073/pnas.95.4.1735.
72. Zhang LY, Wu JL, Qiu HB, Dong SS, Zhu YH, Lee VH, et al. PSCA acts as a tumor suppressor by facil¬itating the nuclear translocation of RB1CC1 in eso¬phageal squamous cell carcinoma. Carcinogenesis. 2016;37[3]:320-32, 10.1093/carcin/bgw010.
73. Saffran DC, Raitano AB, Hubert RS, Witte ON, Re¬iter RE, Jakobovits A. Anti-PSCA mAbs inhibit tu¬mor growth and metastasis formation and prolong the survival of mice bearing human prostate can¬cer xenografts. Proceedings of the National Acad¬emy of Sciences of the United States of America. 2001;98[5]:2658-63, 10.1073/pnas.051624698.
74. Ahmad S, Casey G, Sweeney P, Tangney M, O’Sulli¬van GC. Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth. Molecular therapy : the journal of the American Society of Gene Therapy. 2009;17[6]:1101- 8, 10.1038/mt.2009.66.
75. Kim SH, Park WS, Kim SH, Park B, Joo J, Lee GK, et al. Prostate Stem Cell Antigen Expression in Radical Prostatectomy Specimens Predicts Early Biochemi¬cal Recurrence in Patients with High Risk Prostate Cancer Receiving Neoadjuvant Hormonal Thera¬py. PloS one. 2016;11[3]:e0151646, 10.1371/journal. pone.0151646.
76. Kim SH, Park WS, Lee SJ, Choi MK, Yeon SM, Joo JN, et al. The Quantified Level of Circulating Prostate Stem Cell Antigen mRNA relative to GAPDH Level Is a Clinically Significant Indictor for Predicting Bi¬ochemical Recurrence in Prostate Cancer Patients after Radical Prostatectomy. BioMed research inter¬national. 2015;2015:292454, 10.1155/2015/292454.
77. Youssef NS, Radwan NA, Abd El Khalek SMM, Sha¬hin MA, El-Maraghy MN. Study of immunohisto¬chemical expression of prostate stem cell antigen in prostatic carcinoma. Egyptian Journal of Pathology. 2015;35[1]:30-7, 10.1097/01.XEJ.0000462729.29566. e1.
78. Dorfman DM, Shahsafaei A. CD200 [OX-2 mem¬brane glycoprotein] expression in b cell-derived ne¬oplasms. American journal of clinical pathology. 2010;134[5]:726-33, 10.1309/ajcp38xrrugsqovc.
79. Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, Prins RM, et al. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. Journal for immunotherapy of cancer. 2014;2[1]:46, 10.1186/ s40425-014-0046-9.
80. Rygiel TP, Meyaard L. CD200R signaling in tumor tol¬erance and inflammation: A tricky balance. Current opinion in immunology. 2012;24[2]:233-8, 10.1016/j. coi.2012.01.002.
81. Miao Y, Fan L, Wu YJ, Xia Y, Qiao C, Wang Y, et al. Low expression of CD200 predicts shorter time-to-treat¬ment in chronic lymphocytic leukemia. Oncotarget. 2016;7[12]:13551-62, 10.18632/oncotarget.6948.
82. Li L, Tian Y, Shi C, Zhang H, Zhou Z. Over-Expres¬sion of CD200 Predicts Poor Prognosis in Cutaneous Squamous Cell Carcinoma. Medical science monitor : international medical journal of experimental and clinical research. 2016;22:1079-84.
83. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, et al. CD200 expression on tumor cells suppresses antitumor immunity: new ap¬proaches to cancer immunotherapy. Journal of immu¬nology [Baltimore, Md : 1950]. 2007;178[9]:5595-605.
84. Atfy M, Ebian HF, Elshorbagy SM, Atteia HH. CD200 suppresses the natural killer cells and decreased its activity in acute myeloid leukemia patients. Journal of Leukemia. 2015:1-5.
85. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 2009;8[10]:806-23, 10.1038/nrd2137.
86. Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Cancer stem cells: progress and challeng¬es in lung cancer. Stem cell investigation. 2014;1:9, 10.3978/j.issn.2306-9759.2014.03.06.
87. Podberezin M, Wen J, Chang CC. Cancer stem cells: a review of potential clinical applications. Archives of pathology & laboratory medicine. 2013;137[8]:1111- 6, 10.5858/arpa.2012-0494-RA.
88. Hu X, Cong Y, Luo HH, Wu S, Zhao LE, Liu Q, et al. Cancer Stem Cells Therapeutic Target Database: The First Comprehensive Database for Therapeutic Targets of Cancer Stem Cells. Stem cells translational medicine. 2016:sctm. 2015-0289.
89. Scriba LD, Bornstein SR, Santambrogio A, Muel¬ler G, Huebner A, Hauer J, et al. Cancer Stem Cells in Pheochromocytoma and Paraganglioma. Front Endocrinol [Lausanne]. 2020;11:79, 10.3389/fen¬do.2020.00079.
90. Kaiser J. The cancer stem cell gamble. Science. 2015;347[6219]:226-9, 10.1126/science.347.6219.226.
91. Baker M. Melanoma in mice casts doubt on scarci¬ty of cancer stem cells. Nature Publishing Group; 2008.
92. Karsten U, Goletz S. What makes cancer stem cell markers different? Springerplus. 2013;2[1]:301, 10.1186/2193-1801-2-301.
IssueVol 13 No 3 (2021) QRcode
cancer stem cells (CSCs) Cancer therapy Prognostic markers

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Bahrami Salehloo E, Mozdoori N, Dehghan Esmatabadi M javad, Hajigholami S, Bozorgmehr A. Cancer stem cell biomarkers: critical roles, challenges, clinical applications and perspectives in cancer therapy. Basic Clin Cancer Res. 2022;13(3):156-174.