Cancer stem cell biomarkers: critical roles, challenges, clinical applications and perspectives in cancer therapy


Progress in cancer stem cells has opened up a new window to develop better cancer treatment methods. Several pre-clinical and clinical trial studies use CSCs targeting via surface markers method and inhibition of stem cell pathway to eradicate cancer. Albite, some important question was unclear about CSCs origin and molecular mechanism of self-renewal, the structure of CSCs markers and so on, but the eradication of these cells eliminate cancer. In this review, we have argued about the CSC surface markers on different cancers, the mechanisms of action, and therapeutic procedures related to the cancer biomarkers. Then, we have discussed the challenges of these therapies.
1. Chen K, Huang Y-h, Chen J-l. Understanding and targeting cancer stem cells: therapeutic implications and challenges. Acta Pharmacologica Sinica. 2013;34(6):732-40.
2. Jayachandran A, Dhungel B, Steel JC. Epithelial-to-mesenchymal plasticity of cancer stem cells: therapeutic targets in hepatocellular carcinoma. Journal of Hematology & Oncology. 2016;9(1):74.
3. Vicari L, Colarossi C, Giuffrida D, De Maria R, Memeo L. Cancer stem cells as a potential therapeutic target in thyroid carcinoma (Review). Oncology Letters. 2016;12(4):2254-60.
4. Chiba T, Zheng YW, Kita K, Yokosuka O, Saisho H, Onodera M, et al. Enhanced self-renewal capability in hepatic stem/progenitor cells drives cancer initiation. Gastroenterology. 2007 Sep;133(3):937-50. 10.1053/j.gastro.2007.06.016 10.1053/j.gastro.2007.06.016
5. Ni J, Cozzi P, Hao J, Beretov J, Chang L, Duan W, et al. Epithelial cell adhesion molecule (EpCAM) is associated with prostate cancer metastasis and chemo/radioresistance via the PI3K/Akt/mTOR signaling pathway. Int J Biochem Cell Biol. 2013 Dec;45(12):2736-48. 10.1016/j.biocel.2013.09.008 10.1016/j.biocel.2013.09.008
6. Liao MY, Lai JK, Kuo MY, Lu RM, Lin CW, Cheng PC, et al. An anti-EpCAM antibody EpAb2-6 for the treatment of colon cancer. Oncotarget. 2015 Sep 22;6(28):24947-68. 10.18632/oncotarget.4453.Pmc4694806
7. Wang YK, Zhu YL, Qiu FM, Zhang T, Chen ZG, Zheng S, et al. Activation of Akt and MAPK pathways enhances the tumorigenicity of CD133+ primary colon cancer cells. Carcinogenesis. 2010 Aug;31(8):1376-80. 10.1093/carcin/bgq120 10.1093/carcin/bgq120
8. Wang JY, Chang CC, Chiang CC, Chen WM, Hung SC. Silibinin suppresses the maintenance of colorectal cancer stem-like cells by inhibiting PP2A/AKT/mTOR pathways. J Cell Biochem. 2012 May;113(5):1733-43. 10.1002/jcb.24043 10.1002/jcb.24043
9. Fanali C, Lucchetti D, Farina M, Corbi M, Cufino V, Cittadini A, et al. Cancer stem cells in colorectal cancer from pathogenesis to therapy: controversies and perspectives. World J Gastroenterol. 2014 Jan 28;20(4):923-42. 10.3748/wjg.v20.i4.923.Pmc3921545
10. O'Brien CA, Pollett A, Gallinger S, Dick JE. A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature. 2007 Jan 4;445(7123):106-10. 10.1038/nature05372 10.1038/nature05372
11. Feng JM, Miao ZH, Jiang Y, Chen Y, Li JX, Tong LJ, et al. Characterization of the conversion between CD133+ and CD133- cells in colon cancer SW620 cell line. Cancer Biol Ther. 2012 Dec;13(14):1396-406. 10.4161/cbt.22000.Pmc3542230
12. Hsu CS, Tung CY, Yang CY, Lin CH. Response to stress in early tumor colonization modulates switching of CD133-positive and CD133-negative subpopulations in a human metastatic colon cancer cell line, SW620. PLoS One. 2013;8(4):e61133. 10.1371/journal.pone.0061133.Pmc3618272
13. Wang D, Guo Y, Li Y, Li W, Zheng X, Xia H, et al. Detection of CD133 expression in U87 glioblastoma cells using a novel anti-CD133 monoclonal antibody. Oncol Lett. 2015 Jun;9(6):2603-8. 10.3892/ol.2015.3079.Pmc4473606
14. Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, et al. Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 2008 Mar;15(3):504-14. 10.1038/sj.cdd.4402283 10.1038/sj.cdd.4402283
15. Hori Y. Prominin-1 (CD133) Reveals New Faces of Pancreatic Progenitor Cells and Cancer Stem Cells: Current Knowledge and Therapeutic Perspectives. Adv Exp Med Biol. 2013;777:185-96. 10.1007/978-1-4614-5894-4_12 10.1007/978-1-4614-5894-4_12
16. Zhou Q, Chen A, Song H, Tao J, Yang H, Zuo M. Prognostic value of cancer stem cell marker CD133 in ovarian cancer: a meta-analysis. Int J Clin Exp Med. 2015;8(3):3080-8. Pmc4443030.Pmc4443030
17. Mizugaki H, Sakakibara-Konishi J, Kikuchi J, Moriya J, Hatanaka KC, Kikuchi E, et al. CD133 expression: a potential prognostic marker for non-small cell lung cancers. Int J Clin Oncol. 2014 Apr;19(2):254-9. 10.1007/s10147-013-0541-x 10.1007/s10147-013-0541-x
18. Smith LM, Nesterova A, Ryan MC, Duniho S, Jonas M, Anderson M, et al. CD133/prominin-1 is a potential therapeutic target for antibody-drug conjugates in hepatocellular and gastric cancers. Br J Cancer. 2008 Jul 8;99(1):100-9. 10.1038/sj.bjc.6604437.Pmc2453027
19. Deng Y, Su Q, Mo J, Fu X, Zhang Y, Lin EH. Celecoxib downregulates CD133 expression through inhibition of the Wnt signaling pathway in colon cancer cells. Cancer Invest. 2013 Feb;31(2):97-102. 10.3109/07357907.2012.754458 10.3109/07357907.2012.754458
20. Deng YH, Pu XX, Huang MJ, Xiao J, Zhou JM, Lin TY, et al. 5-Fluorouracil upregulates the activity of Wnt signaling pathway in CD133-positive colon cancer stem-like cells. Chin J Cancer. 2010 Sep;29(9):810-5.
21. Takahashi RU, Miyazaki H, Ochiya T. The role of microRNAs in the regulation of cancer stem cells. Front Genet. 2014 Jan 3;4:295. 10.3389/fgene.2013.00295.Pmc3879439
22. Ni M, Xiong M, Zhang X, Cai G, Chen H, Zeng Q, et al. Poly(lactic-co-glycolic acid) nanoparticles conjugated with CD133 aptamers for targeted salinomycin delivery to CD133+ osteosarcoma cancer stem cells. Int J Nanomedicine. 2015;10:2537-54. 10.2147/ijn.s78498.Pmc4386781
23. Tomita H, Tanaka K, Tanaka T, Hara A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016 Mar 8;7(10):11018-32. 10.18632/oncotarget.6920 10.18632/oncotarget.6920
24. Lohberger B, Rinner B, Stuendl N, Absenger M, Liegl-Atzwanger B, Walzer SM, et al. Aldehyde dehydrogenase 1, a potential marker for cancer stem cells in human sarcoma. PLoS One. 2012;7(8):e43664. 10.1371/journal.pone.0043664.3426519
25. Deonarain MP, Kousparou CA, Epenetos AA. Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs. 2009 Jan-Feb;1(1):12-25. Pmc2715180.Pmc2715180
26. Zhao D, Mo Y, Li MT, Zou SW, Cheng ZL, Sun YP, et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J Clin Invest. 2014 Dec;124(12):5453-65. 10.1172/jci76611.Pmc4348941
27. Kim RJ, Park JR, Roh KJ, Choi AR, Kim SR, Kim PH, et al. High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2alpha. Cancer Lett. 2013 Jun 1;333(1):18-31. 10.1016/j.canlet.2012.11.026 10.1016/j.canlet.2012.11.026
28. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007 Nov;1(5):555-67. 10.1016/j.stem.2007.08.014.2423808
29. Deng S, Yang X, Lassus H, Liang S, Kaur S, Ye Q, et al. Distinct expression levels and patterns of stem cell marker, aldehyde dehydrogenase isoform 1 (ALDH1), in human epithelial cancers. PLoS One. 2010 Apr 21;5(4):e10277. 10.1371/journal.pone.0010277.Pmc2858084
30. Tanaka K, Tomita H, Hisamatsu K, Nakashima T, Hatano Y, Sasaki Y, et al. ALDH1A1-overexpressing cells are differentiated cells but not cancer stem or progenitor cells in human hepatocellular carcinoma. Oncotarget. 2015 Sep 22;6(28):24722-32. 10.18632/oncotarget.4406.Pmc4694791
31. Rasheed ZA, Yang J, Wang Q, Kowalski J, Freed I, Murter C, et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. J Natl Cancer Inst. 2010 Mar 3;102(5):340-51. 10.1093/jnci/djp535.2831049
32. Kahlert C, Bergmann F, Beck J, Welsch T, Mogler C, Herpel E, et al. Low expression of aldehyde dehydrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer. 2011 Jun 27;11:275. 10.1186/1471-2407-11-275.Pmc3135572
33. Buishand FO, Arkesteijn GJ, Feenstra LR, Oorsprong CW, Mestemaker M, Starke A, et al. Identification of CD90 as Putative Cancer Stem Cell Marker and Therapeutic Target in Insulinomas. Stem Cells Dev. 2016 Jun 1;25(11):826-35. 10.1089/scd.2016.0032.Pmc4892226
34. Lobba ARM, Forni MF, Carreira ACO, Sogayar MC. Differential expression of CD90 and CD14 stem cell markers in malignant breast cancer cell lines. Cytometry Part A. 2012;81A(12):1084-91. 10.1002/cyto.a.22220 10.1002/cyto.a.22220
35. Ishiura Y, Kotani N, Yamashita R, Yamamoto H, Kozutsumi Y, Honke K. Anomalous expression of Thy1 (CD90) in B-cell lymphoma cells and proliferation inhibition by anti-Thy1 antibody treatment. Biochem Biophys Res Commun. 2010 May 28;396(2):329-34. 10.1016/j.bbrc.2010.04.092 10.1016/j.bbrc.2010.04.092
36. Fujita N, Kato Y, Naito M, Tsuruo T. A novel anti-Thy-1 (CD90) monoclonal antibody induces apoptosis in mouse malignant T-lymphoma cells in spite of inducing bcl-2 expression. Int J Cancer. 1996 May 16;66(4):544-50. 10.1002/(sici)1097-0215(19960516)66:4<544::aid-ijc20>;2-6 10.1002/(sici)1097-0215(19960516)66:4<544::aid-ijc20>;2-6
37. Rege TA, Hagood JS. Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis. Faseb j. 2006 Jun;20(8):1045-54. 10.1096/fj.05-5460rev 10.1096/fj.05-5460rev
38. Louderbough JM, Schroeder JA. Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res. 2011 Dec;9(12):1573-86. 10.1158/1541-7786.mcr-11-0156 10.1158/1541-7786.mcr-11-0156
39. Godar S, Ince TA, Bell GW, Feldser D, Donaher JL, Bergh J, et al. Growth-inhibitory and tumor- suppressive functions of p53 depend on its repression of CD44 expression. Cell. 2008 Jul 11;134(1):62-73. 10.1016/j.cell.2008.06.006.Pmc3222460
40. Li J, Zhou BP. Activation of beta-catenin and Akt pathways by Twist are critical for the maintenance of EMT associated cancer stem cell-like characters. BMC Cancer. 2011 Feb 1;11:49. 10.1186/1471-2407-11-49.Pmc3040162
41. Yan Y, Zuo X, Wei D. Concise Review: Emerging Role of CD44 in Cancer Stem Cells: A Promising Biomarker and Therapeutic Target. Stem Cells Transl Med. 2015 Sep;4(9):1033-43. 10.5966/sctm.2015-0048.4542874
42. Afify A, Purnell P, Nguyen L. Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol. 2009 Apr;86(2):95-100. 10.1016/j.yexmp.2008.12.003 10.1016/j.yexmp.2008.12.003
43. Jaggupilli A, Elkord E. Significance of CD44 and CD24 as cancer stem cell markers: an enduring ambiguity. Clin Dev Immunol. 2012;2012:708036. 10.1155/2012/708036.Pmc3369436
44. Cheng W, Liu T, Wan X, Gao Y, Wang H. MicroRNA-199a targets CD44 to suppress the tumorigenicity and multidrug resistance of ovarian cancer-initiating cells. Febs j. 2012 Jun;279(11):2047-59. 10.1111/j.1742-4658.2012.08589.x 10.1111/j.1742-4658.2012.08589.x
45. Misra S, Ghatak S, Zoltan-Jones A, Toole BP. Regulation of multidrug resistance in cancer cells by hyaluronan. J Biol Chem. 2003 Jul 11;278(28):25285-8. 10.1074/jbc.C300173200 10.1074/jbc.C300173200
46. Yang XR, Xu Y, Yu B, Zhou J, Li JC, Qiu SJ, et al. CD24 is a novel predictor for poor prognosis of hepatocellular carcinoma after surgery. Clin Cancer Res. 2009 Sep 1;15(17):5518-27. 10.1158/1078-0432.ccr-09-0151 10.1158/1078-0432.ccr-09-0151
47. Wang W, Wang X, Peng L, Deng Q, Liang Y, Qing H, et al. CD24-dependent MAPK pathway activation is required for colorectal cancer cell proliferation. Cancer Sci. 2010 Jan;101(1):112-9. 10.1111/j.1349-7006.2009.01370.x 10.1111/j.1349-7006.2009.01370.x
48. Meyer MJ, Fleming JM, Ali MA, Pesesky MW, Ginsburg E, Vonderhaar BK. Dynamic regulation of CD24 and the invasive, CD44posCD24neg phenotype in breast cancer cell lines. Breast Cancer Res. 2009;11(6):R82. 10.1186/bcr2449.Pmc2815544
49. Hosonaga M, Arima Y, Sugihara E, Kohno N, Saya H. Expression of CD24 is associated with HER2 expression and supports HER2-Akt signaling in HER2-positive breast cancer cells. Cancer Sci. 2014 Jul;105(7):779-87. 10.1111/cas.12427.Pmc4317915
50. Rostoker R, Jayaprakash AD, Sachidanandam R, LeRoith D. Deep sequencing of mRNA in CD24(-) and CD24(+) mammary carcinoma Mvt1 cell line. Genom Data. 2015 Sep;5:399-401. 10.1016/j.gdata.2015.06.032.Pmc4583690
51. Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, et al. The JAK2/STAT3 signaling pathway is required for growth of CD44(+)CD24(-) stem cell-like breast cancer cells in human tumors. J Clin Invest. 2011 Jul;121(7):2723-35. 10.1172/jci44745.Pmc3223826
52. Tanaka H, Nakamura M, Kameda C, Kubo M, Sato N, Kuroki S, et al. The Hedgehog signaling pathway plays an essential role in maintaining the CD44+CD24-/low subpopulation and the side population of breast cancer cells. Anticancer Res. 2009 Jun;29(6):2147-57.
53. Cirenajwis H, Smiljanic S, Honeth G, Hegardt C, Marton LJ, Oredsson SM. Reduction of the putative CD44+CD24- breast cancer stem cell population by targeting the polyamine metabolic pathway with PG11047. Anticancer Drugs. 2010 Nov;21(10):897-906. 10.1097/CAD.0b013e32833f2f77 10.1097/CAD.0b013e32833f2f77
54. Mine T, Matsueda S, Li Y, Tokumitsu H, Gao H, Danes C, et al. Breast cancer cells expressing stem cell markers CD44+ CD24 lo are eliminated by Numb-1 peptide-activated T cells. Cancer Immunol Immunother. 2009 Aug;58(8):1185-94. 10.1007/s00262-008-0623-1.Pmc2726795
55. Ju JH, Jang K, Lee KM, Kim M, Kim J, Yi JY, et al. CD24 enhances DNA damage-induced apoptosis by modulating NF-kappaB signaling in CD44-expressing breast cancer cells. Carcinogenesis. 2011 Oct;32(10):1474-83. 10.1093/carcin/bgr173 10.1093/carcin/bgr173
56. Okada T, Nakamura T, Watanabe T, Onoda N, Ashida A, Okuyama R, et al. Coexpression of EpCAM, CD44 variant isoforms and claudin-7 in anaplastic thyroid carcinoma. PLoS One. 2014;9(4):e94487. 10.1371/journal.pone.0094487.Pmc3984167
57. Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci U S A. 2007 Jun 12;104(24):10158-63. 10.1073/pnas.0703478104.Pmc1891215
58. Kuhn S, Koch M, Nubel T, Ladwein M, Antolovic D, Klingbeil P, et al. A complex of EpCAM, claudin-7, CD44 variant isoforms, and tetraspanins promotes colorectal cancer progression. Mol Cancer Res. 2007 Jun;5(6):553-67. 10.1158/1541-7786.mcr-06-0384 10.1158/1541-7786.mcr-06-0384
59. Wang M, Xiao J, Shen M, Yahong Y, Tian R, Zhu F, et al. Isolation and characterization of tumorigenic extrahepatic cholangiocarcinoma cells with stem cell-like properties. Int J Cancer. 2011 Jan 1;128(1):72-81. 10.1002/ijc.25317 10.1002/ijc.25317
60. Bao B, Wang Z, Ali S, Kong D, Li Y, Ahmad A, et al. Notch-1 induces epithelial-mesenchymal transition consistent with cancer stem cell phenotype in pancreatic cancer cells. Cancer Lett. 2011 Aug 1;307(1):26-36. 10.1016/j.canlet.2011.03.012.Pmc3104092
61. Reiter RE, Gu Z, Watabe T, Thomas G, Szigeti K, Davis E, et al. Prostate stem cell antigen: A cell surface marker overexpressed in prostate cancer. Proceedings of the National Academy of Sciences. 1998;95(4):1735-40. 10.1073/pnas.95.4.1735 10.1073/pnas.95.4.1735
62. Zhang LY, Wu JL, Qiu HB, Dong SS, Zhu YH, Lee VH, et al. PSCA acts as a tumor suppressor by facilitating the nuclear translocation of RB1CC1 in esophageal squamous cell carcinoma. Carcinogenesis. 2016 Mar;37(3):320-32. 10.1093/carcin/bgw010 10.1093/carcin/bgw010
63. Saffran DC, Raitano AB, Hubert RS, Witte ON, Reiter RE, Jakobovits A. Anti-PSCA mAbs inhibit tumor growth and metastasis formation and prolong the survival of mice bearing human prostate cancer xenografts. Proc Natl Acad Sci U S A. 2001 Feb 27;98(5):2658-63. 10.1073/pnas.051624698.Pmc30194
64. Ahmad S, Casey G, Sweeney P, Tangney M, O'Sullivan GC. Prostate stem cell antigen DNA vaccination breaks tolerance to self-antigen and inhibits prostate cancer growth. Mol Ther. 2009 Jun;17(6):1101-8. 10.1038/mt.2009.66.Pmc2835175
65. Kim SH, Park WS, Kim SH, Park B, Joo J, Lee GK, et al. Prostate Stem Cell Antigen Expression in Radical Prostatectomy Specimens Predicts Early Biochemical Recurrence in Patients with High Risk Prostate Cancer Receiving Neoadjuvant Hormonal Therapy. PLoS One. 2016;11(3):e0151646. 10.1371/journal.pone.0151646.Pmc4794240
66. Kim SH, Park WS, Lee SJ, Choi MK, Yeon SM, Joo JN, et al. The Quantified Level of Circulating Prostate Stem Cell Antigen mRNA relative to GAPDH Level Is a Clinically Significant Indictor for Predicting Biochemical Recurrence in Prostate Cancer Patients after Radical Prostatectomy. Biomed Res Int. 2015;2015:292454. 10.1155/2015/292454.Pmc4615861
67. Youssef NS, Radwan NA, Abd El Khalek SMM, Shahin MA, El-Maraghy MN. Study of immunohistochemical expression of prostate stem cell antigen in prostatic carcinoma. Egyptian Journal of Pathology. 2015;35(1):30-7. 10.1097/01.XEJ.0000462729.29566.e1 10.1097/01.XEJ.0000462729.29566.e1
68. Dorfman DM, Shahsafaei A. CD200 (OX-2 membrane glycoprotein) expression in b cell-derived neoplasms. Am J Clin Pathol. 2010 Nov;134(5):726-33. 10.1309/ajcp38xrrugsqovc 10.1309/ajcp38xrrugsqovc
69. Moertel CL, Xia J, LaRue R, Waldron NN, Andersen BM, Prins RM, et al. CD200 in CNS tumor-induced immunosuppression: the role for CD200 pathway blockade in targeted immunotherapy. J Immunother Cancer. 2014;2(1):46. 10.1186/s40425-014-0046-9.Pmc4296547
70. Rygiel TP, Meyaard L. CD200R signaling in tumor tolerance and inflammation: A tricky balance. Curr Opin Immunol. 2012 Apr;24(2):233-8. 10.1016/j.coi.2012.01.002 10.1016/j.coi.2012.01.002
71. Miao Y, Fan L, Wu YJ, Xia Y, Qiao C, Wang Y, et al. Low expression of CD200 predicts shorter time-to-treatment in chronic lymphocytic leukemia. Oncotarget. 2016 Mar 22;7(12):13551-62. 10.18632/oncotarget.6948 10.18632/oncotarget.6948
72. Li L, Tian Y, Shi C, Zhang H, Zhou Z. Over-Expression of CD200 Predicts Poor Prognosis in Cutaneous Squamous Cell Carcinoma. Med Sci Monit. 2016;22:1079-84. Pmc4822938.Pmc4822938
73. Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy. J Immunol. 2007 May 1;178(9):5595-605.
74. Atfy M, Ebian HF, Elshorbagy SM, Atteia HH. CD200 suppresses the natural killer cells and decreased its activity in acute myeloid leukemia patients. Journal of Leukemia. 2015.1-5.
75. Templeton AK, Miyamoto S, Babu A, Munshi A, Ramesh R. Cancer stem cells: progress and challenges in lung cancer. Stem Cell Investig. 2014;1:9. 10.3978/j.issn.2306-9759.2014.03.06.Pmc4923513
76. Podberezin M, Wen J, Chang CC. Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med. 2013 Aug;137(8):1111-6. 10.5858/arpa.2012-0494-RA 10.5858/arpa.2012-0494-RA
77. Hu X, Cong Y, Luo HH, Wu S, Zhao LE, Liu Q, et al. Cancer Stem Cells Therapeutic Target Database: The First Comprehensive Database for Therapeutic Targets of Cancer Stem Cells. Stem Cells Translational Medicine. 2016.sctm. 2015-0289.
IssueVol 13 No 3 (2021) QRcode
cancer stem cells (CSCs); Cancer therapy; Prognostic markers

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Bahrami Salehloo E, Mozdoori N, Dehghan Esmatabadi M javad, Hajigholami S, Bozorgmehr A. Cancer stem cell biomarkers: critical roles, challenges, clinical applications and perspectives in cancer therapy. Basic Clin Cancer Res. 2022;13(3):156-174.