Cross-Reacting Material 197, a Specific Inhibitor of HB-EGF, and Its Anticancer Effects
Abstract
Genetic heterogeneity accompanied by metastasis are the most important factors which have faced cancer treatment with the challenge. Recent studies have introduced a mutant of diphtheria toxin, cross-reacting materials 197 (CRM197), as a promising new biological anticancer drug to improve cancer therapy in patients who have previously resistant to chemotherapy. The weak toxicity of CRM197 accounts for the stimulation of cell apoptosis and the antitumor effect. Increasing evidence has indicated that the expression of Heparin-binding epidermal growth factor-like (HB-EGF) growth factor enhanced in most of the cancer cells and CRM197 is the specific inhibitor of it. The current study has focused on the structure, properties, and anticancer activity of CRM197.
1. Holmes RK. Biology and molecular epidemiology of diphtheria toxin and the tox gene. J Infect Dis. 2000; 181:S156-S167.
2. Trost E, Blom J, Soares Sde C, et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 2012; 194:3199-3215.
3. Qian Y, Lee JH, Holmes RK. Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol. 2002; 184:4846-4856.
4. Guedon E, Helmann JD. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol. 2003; 48:495-506.
5. Collier R. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon. 2001; 39:1793-1803.
6. Kaczorek M, Delpeyroux F, Chenciner N, Streeck RE, Boquet P, Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science. 1983; 221:855-858.
7. Smith W, Tai P, Murphy J, Davis B. Precursor in cotranslational secretion of diphtheria toxin. J Bacteriol. 1980; 141:184-189.
8. Greenfield L, Bjorn MJ, Horn G, et al. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci. 1983; 80:6853-6857.
9. Zhang J, Wei H, Guo X, Hu M, Gao F, Li L, et al. Functional verification of the diphtheria toxin A gene in a recombinant system. J Anim Sci Biotechnol. 2012; 3:29.
10. Shafiee F, Aucoin MG, Jahanian Najafabadi A. Targeted Diphtheria Toxin Based Therapy: A Review Article. Front Microbiol. 2019; 10:2340.
11. Chenal A, Nizard P, Gillet D. Structure and function of diphtheria toxin: from pathology to engineering. J Toxicol. 2002; 21:321-359.
12. Holger B. uptake and trafficking of protein toxins book. springer international publishing; 2017.
13. Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins. 2011; 3:294-308.
14. Louie GV, Yang W, Bowman ME, Choe S. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol cell. 1997; 1:67-78.
15. Edwards JP, Zhang X, Mosser DM. The expression of heparin-binding epidermal growth factor-like growth factor by regulatory macrophages. J Immunol. 2009; 182:1929-1939.
16. Freeman MR, Yoo JJ, Raab G, Soker S, et al. Heparin-binding EGF-like growth factor is an autocrine growth factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J Clin Invest. 1997; 99:1028-1036.
17. Thorne BA, Plowman GD. The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell biol. 1994; 14:1635-1646.
18. Lanzrein M, Garred O, Olsnes S, Sandvig K. Diphtheria toxin endocytosis and membrane translocation are dependent on the intact membrane-anchored receptor (HB-EGF precursor): studies on the cell-associated receptor cleaved by a metalloprotease in phorbol-ester-treated cells. Biochem J. 1995; 310:285-289.
19. Chiron MF, Fryling CM, FitzGerald DJ. Cleavage of pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem. 1994; 269:18167-18176.
20. Lemichez E, Bomsel M, Devilliers G, et al. Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol. 1997; 23:445-457.
21. Watson P, Spooner RA. Toxin entry and trafficking in mammalian cells. Adv Drug Deliv Rev. 2006; 58:1581-1596.
22. Papini E, Rappuoli R, Murgia M, Montecucco C. Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem. 1993; 268:1567-1574.
23. Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol. 2014; 12:599-611.
24. Collier RJ. Diphtheria toxin: mode of action and structure. Bacteriol rev. 1975; 39:54.
25. Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984; 12:4063-4069.
26. Uchida T, Pappenheimer AM, Greany R. Diphtheria toxin and related proteins I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem. 1973; 248:3838-3844.
27. Brooke JS, Cha J-H, Eidels L. Diphtheria toxin: receptor interaction: association, dissociation, and effect of pH. Biochem Biophy Res Co. 1998; 248:297-302.
28. Broker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R. Biochemical and biological characteristics of cross-reacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals. 2011; 39:195-204.
29. Mishra RPN, Yadav RSP, Jones C, et al. Structural and immunological characterization of E. coli derived recombinant CRM197 protein used as carrier in conjugate vaccines. Biosci Rep. 2018; 38.
30. Papini E, Schiavo G, Tomasi M, Colombatti M, Rappouli R, Montecucco C. Lipid interaction of diphtheria toxin and mutants with altered fragment B: 2. Hydrophobic photolabelling and cell intoxication. EurJ Biochem. 1987; 169:637-644.
31. Sandvig K, Olsnes S. Diphtheria toxin entry into cells is facilitated by low pH. J Cell biol. 1980; 87:828-832.
32. Demel R, Schiavo G, Kruigff Bd, Montecucco C. Lipid interaction of diphtheria toxin and mutants: a study with phospholipid and protein monolayers. Eur J Biochem. 1991; 197:481-486.
33. Hu VW, Holmes RK. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior. Biochim Biophys Acta.1987; 902:24-30.
34. Kent MS, Yim H, Murton JK, Satija S, Majewski J, Kuzmenko I. Oligomerization of membrane-bound diphtheria toxin (CRM197) facilitates a transition to the open form and deep insertion. Biophys J. 2008; 94:2115-2127.
35. Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J Biol Chem. 1995; 270:1015-1019.
36. Gregory H. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature. 1975; 257:325-327.
37. Iwamoto R, Takagi M, Akatsuka J, Ono K, Kishi Y, Mekada E. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers. Monoclon Antib Immunodiagn Immunother. 2016; 35:73-82.
38. Zhao G, Liu L, Peek RM, Jr., Hao X, Polk DB, Li H, et al. Activation of Epidermal Growth Factor Receptor in Macrophages Mediates Feedback Inhibition of M2 Polarization and Gastrointestinal Tumor Cell Growth. J Biol Chem. 2016; 291:20462-20472.
39. Negahdari B, Shahosseini Z, Baniasadi V. Production of human epidermal growth factor using adenoviral based system. Res Pharm Sci. 2016; 11:43-48.
40. Miyazono K. Ectodomain shedding of HB-EGF: a potential target for cancer therapy. J Biochem. 2012; 151:1-3.
41. Kim GY, Besner GE, Steffen CL, et al. Purification of heparin-binding epidermal growth factor-like growth factor from pig uterine luminal flushings, and its production by endometrial tissues. Biol Reprod. 1995; 52:561-571.
42. Higashiyama S, Lau K, Besner G, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992; 267:6205-6212.
43. Uchiyama-Tanaka Y, Matsubara H, Mori Y, et al. Involvement of HB-EGF and EGF receptor transactivation in TGF-β–mediated fibronectin expression in mesangial cells. Kidney Int. 2002; 62:799-808.
44. Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins. 2013; 5:1180-1201.
45. Eidels L, Ross LL, Hart DA. Diphtheria toxin-receptor interaction: a polyphosphate-insensitive diphtheria toxin-binding domain. Biochem Bioph Res Co. 1982; 109:493-499.
46. Brooke JS, Cha J-H. Molecular characterization of key diphtheria toxin: receptor interactions. Biochem Bioph Res Co. 2000; 275:374-381.
47. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008; 65:1566-1584.
48. Wang Q, Chen X, Wang Z. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes. J Cell Sci. 2015; 128:935-950.
49. Bodnar RJ. Epidermal Growth Factor and Epidermal Growth Factor Receptor: The Yin and Yang in the Treatment of Cutaneous Wounds and Cancer. Adv Wound Care. 2013; 2:24-29.
50. Purba ER, Saita EI, Maruyama IN. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells. 2017; 6.
51. Rayego-Mateos S, Rodrigues-Diez R, Morgado-Pascual JL, et al. Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm. 2018; 2018:8739473.
52. Roskoski R, Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res. 2019; 139:395-411.
53. Walsh AM, Lazzara MJ. Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells. J Cell Sci. 2013; 126:4339-4348.
54. Miyamoto S, Yagi H, Yotsumoto F, et al. New approach to cancer therapy: heparin binding-epidermal growth factor-like growth factor as a novel targeting molecule. Anticancer Res. 2007; 27:3713-3721.
55. Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal. 2007; 19:2013-2023.
56. Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006; 366:2-16.
57. Koshikawa N, Mizushima H, Minegishi T, et al. Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Sci. 2011; 102:111-116.
58. Amedei A, Asadzadeh F, Papi F, et al. A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple Negative Breast Cancer. iScience. 2020:101250.
59. Song C, Zheng X-J, Guo H, et al. Fluorine-modified sialyl-Tn-CRM197 vaccine elicits a robust immune response. Glycoconj J. 2019; 36(5):399-408.
60. Mawas F, Niggemann J, Jones C, Corbel MJ, Kamerling JP, Vliegenthart JF. Immunogenicity in a mouse model of a conjugate vaccine made with a synthetic single repeating unit of type 14 pneumococcal polysaccharide coupled to CRM197. Infect Immun. 2002; 70:5107-5114.
61. Zhang H-L, Yuan C, Zhang D-M, et al. A novel combined conjugate vaccine: enhanced immunogenicity of bFGF with CRM197 as a carrier protein. Mol Med Rep. 2011; 4:857-863.
62. Huiyong Z, Yong L, Didier M, et al. Enhanced inhibition of murine prostatic carcinoma growth by immunization with or administration of viable human umbilical vein endothelial cells and CRM197. Braz J Med Biol Res. 2011; 44:140-148.
63 .Jaffe J, Wucherer K, Sperry J, Zou Q, Chang Q, Massa MA, et al. Effects of conformational changes in peptide–CRM197 conjugate vaccines. Bioconjugate chemistry. 2018;30(1):47-53.
64. Amedei A, Asadzadeh F, Papi F, Vannucchi MG, Ferrucci V, Bermejo IA, et al. A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple-Negative Breast Cancer. Iscience. 2020;23(6):101250. 65.Wang L, Wang P, Liu Y, Xue Y. Regulation of cellular growth, apoptosis, and Akt activity in human U251 glioma cells by a combination of cisplatin with CRM197. Anti-cancer drugs. 2012;23(1):81-9.
66 . Buzzi S, Rubboli D, Buzzi G, Buzzi AM, Morisi C, Pironi F. CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunology, Immunotherapy. 2004;53(11):1041-8.
67. Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S. Synergistic anti‐tumor effect of paclitaxel with CRM197, an inhibitor of HB‐EGF, in ovarian cancer. International journal of cancer. 2009;124(6):1429-39.
68. Barbolina MV. Molecular Mechanisms Regulating Organ-Specific Metastases in Epithelial Ovarian Carcinoma. Cancers (Basel). 2018;10(11).
69. Mitra AK. Ovarian Cancer Metastasis: A Unique Mechanism of Dissemination. Tumor Metastasis: IntechOpen; 2016.
70. Slack-Davis JK, Atkins KA, Harrer C, Hershey ED, Conaway M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer research. 2009;69(4):1469-76.
71. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9-22.
72.Yagi H, Yotsumoto F, Miyamoto S. Heparin-binding epidermal growth factor–like growth factor promotes transcoelomic metastasis in ovarian cancer through epithelial-mesenchymal transition. Molecular cancer therapeutics. 2008;7(10):3441-51.
73. Yotsumoto F, Sanui A, Fukami T, Shirota K, Horiuchi S, Tsujioka H, et al. Efficacy of ligand-based targeting for the EGF system in cancer. Anticancer Res. 2009;29(11):4879-85.
74.Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S. Synergistic anti-tumor effect of paclitaxel with CRM197, an inhibitor of HB-EGF, in ovarian cancer. International journal of cancer. 2009;124(6):1429-39.
75.Martarelli D, Pompei P, Mazzoni G. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM197. Chemotherapy. 2009;55(6):425-32.
76. Sanui A, Yotsumoto F, Tsujioka H, Fukami T, Horiuchi S, Shirota K, et al. HB-EGF inhibition in combination with various anticancer agents enhances its antitumor effects in gastric cancer. Anticancer research. 2010;30(8):3143-9. 77.Yotsumoto F, Oki E, Tokunaga E, Maehara Y, Kuroki M, Miyamoto S. HB‐EGF orchestrates the complex signals involved in triple‐ negative and trastuzumab‐resistant breast cancer. International journal of cancer. 2010;127(11):2707-17.
78.Pu P, Kang C, Zhang Z, Liu X, Jiang H. Downregulation of PIK3CB by siRNA suppresses malignant glioma cell growth in vitro and in vivo. Technology in cancer research & treatment. 2006;5(3):271-80.
79. Pu P, Kang C, Li J, Jiang H. Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion. Tumor Biology. 2004;25(4):172-8.
80.Pu P, Kang C, Li J, Jiang H, Cheng J. The effects of antisense AKT2 RNA on the inhibition of malignant glioma cell growth in vitro and in vivo. Journal of neuro-oncology. 2006;76(1):1.
81. Dateoka S, Ohnishi Y, Kakudo K. Effects of CRM197, a specific inhibitor of HB-EGF, in oral cancer. Medical molecular morphology. 2012;45(2):91-7.
82. Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H, Sonoda K, et al. Clinical significance of heparin-binding epidermal growth factor–like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clinical Cancer Research. 2005;11(13):4783-92.
83. Nam SO, Yotsumoto F, Miyata K, Souzaki R, Taguchi T, Kuroki M, et al. Validity of HB-EGF as target for human neuroblastoma therapy. Anticancer research. 2015;35(8):4433-40.
84. Nam SO, Yotsumoto F, Miyata K, Fukagawa S, Odawara T, Manabe S, et al. Anti-tumor effect of intravenous administration of CRM197 for triple-negative breast cancer therapy. Anticancer research. 2016;36(7):3651-7. 85.Yotsumoto F, Fukagawa S, Miyata K, Nam SO, Katsuda T, Miyahara D, et al. HB-EGF Is a Promising Therapeutic Target for Lung Cancer with Secondary Mutation of EGFRT790M. Anticancer research. 2017;37(7):3825-31.
86. Dai L, Pan Q, Peng Y, Huang S, Liu J, Chen T, et al. p53 Plays a Key Role in the Apoptosis of Human Ovarian Cancer Cells Induced by Adenovirus-Mediated CRM197. Hum Gene Ther. 2018;29(8):916-26.
87. Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, et al. Causes of death among cancer patients. Ann Oncol. 2017;28(2):400-7.
88.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
89. Escaff S, Fernandez J, Gonzalez L, Suárez A, Gonzalez-Reyes S, Gonzalez J, et al. Study of matrix metalloproteinases and their inhibitors in prostate cancer. British journal of cancer. 2010;102(5):922-9.
90. Society AC. Cancer Treatment & Survivorship Facts & Figures 2019–2021. American Cancer Society Atlanta, GA; 2019.
91. Tang XH, Deng S, Li M, Lu MS. Cross-reacting material 197 reverses the resistance to paclitaxel in paclitaxel-resistant human ovarian cancer. Tumour Biol. 2016;37(4):5521-8.
92.Tang X, Lu M, Li C, Deng S, Li M. [Expression and significance of heparin binding-epidermal growth factor-like growth factor in paclitaxel-resistant ovarian cancer]. Zhonghua Fu Chan Ke Za Zhi. 2014;49(7):517-22.
93. Hu Y, Lin X, Wang P, Xue YX, Li Z, Liu LB, et al. CRM197 in Combination With shRNA Interference of VCAM-1 Displays Enhanced Inhibitory Effects on Human Glioblastoma Cells. J Cell Physiol. 2015;230(8):1713-28.
94. Fiorentini G, Banfi R, Dentico P, Moriconi S, Turrisi G, Pelagotti F, et al. Clinical experience of treatment of metastatic melanoma and solid tumours adopting a derivative of diphtheria toxin: cross-reacting material 197. In Vivo. 2013;27(2):197-202.
95. Rivetti S, Lauriola M, Voltattorni M, Bianchini M, Martini D, Ceccarelli C, et al. Gene expression profile of human colon cancer cells treated with cross-reacting material 197, a diphtheria toxin non-toxic mutant. Int J Immunopathol Pharmacol. 2011;24(3):639-49.
96. Kunami N, Yotsumoto F, Ishitsuka K, Fukami T, Odawara T, Manabe S, et al. Antitumor effects of CRM197, a specific inhibitor of HB-EGF, in T-cell acute lymphoblastic leukemia. Anticancer Res. 2011;31(7):2483-8.
97. Cheng L-m, Jiang J-g, Sun Z-y, Chen C, Dackor RT, Zeldin DC, et al. The epoxyeicosatrienoic acid-stimulated phosphorylation of EGF-R involves the activation of metalloproteinases and the release of HB-EGF in cancer cells. Acta pharmacologica Sinica. 2010;31(2):211-8.
98. Tsujioka H, Yotsumoto F, Shirota K, Horiuchi S, Yoshizato T, Kuroki M, et al. Emerging strategies for ErbB ligand-based targeted therapy for cancer. Anticancer research. 2010;30(8):3107-12.
99. Tang Xh, Li H, Zheng Xs, Lu Ms, An Y, Zhang Xl. CRM197 reverses paclitaxel resistance by inhibiting the NAC‐1/Gadd45 pathway in paclitaxel‐resistant ovarian cancer cells. Cancer medicine. 2019;8(14):6426-36.
100.Fogar P, Navaglia F, Basso D, Zambon C, Moserle L, Indraccolo S, et al. Heat-induced transcription of diphtheria toxin A or its var iants, CRM176 and CRM197: implications for pancreatic cancer gene therapy. Cancer Gene Therapy. 2010;17(1):58-68.
101.Tsujioka H, Yotsumoto F, Hikita S, Ueda T, Kuroki M, Mi - yamoto S. Targeting the heparin-binding epidermal growth fac - tor-like growth factor in ovarian cancer therapy. Current Opinion in Obstetrics and Gynecology. 2011;23(1):24-30.
102. Cheng K, Xie G, Raufman J-P. Matrix metalloproteinase-7-cata - lyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochemical pharmacology. 2007;73(7):1001-12.
103. Weerakkody LR, Witharana C. The role of bacterial toxins and spores in cancer therapy. Life sciences. 2019;235:116839.
104.Agarwal V, Subash A, Nayar RC, Rao V. Is EGFR really a thera - peutic target in head and neck cancers? J Surg Oncol. 2019.
105. Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR‐positive cancer cell lines with or without erbB2 overex - pression. International journal of cancer. 2001;94(6):774-82.
106. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3-20.
107. Tang XH, Deng S, Li M, Lu MS. The anti-tumor effect of cross-re - acting material 197, an inhibitor of heparin-binding EGF-like growth factor, in human resistant ovarian cancer. Biochem Bio - phys Res Commun. 2012;422(4):676-80.
108. Miyata K, Yotsumoto F, Nam SO, Odawara T, Manabe S, Ishikawa T, et al. Contribution of transcription factor, SP1, to the promo - tion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma. Cancer Med. 2014;3(5):1159-69.
109. Miyamoto S, Yotsumoto F, Ueda T, Fukami T, Sanui A, Miya - ta K, et al. BK-UM in patients with recurrent ovarian cancer or peritoneal cancer: a first-in-human phase-I study. BMC Cancer. 2017;17(1):89.
110. Huang YL, Hung JT, Cheung SK, Lee HY, Chu KC, Li ST, et al. Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A. 2013;110(7):2517-22.
111.Seiki M. Membrane-type 1 matrix metalloproteinase: a key en - zyme for tumor invasion. Cancer letters. 2003;194(1):1-11.
112. Fukushima R, Kasamatsu A, Nakashima D, Higo M, Fushimi K, Kasama H, et al. Overexpression of Translocation Associated Membrane Protein 2 Leading to Cancer-Associated Matrix Met - alloproteinase Activation as a Putative Metastatic Factor for Hu - man Oral Cancer. J Cancer. 2018;9(18):3326-33.
113. Conlon GA, Murray GI. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and me - tastasis. J Pathol. 2019;247(5):629-40.
114. Koshikawa N. MT1-MMP cleaves off the NH2-terminal portion of HB-EGF and converts it into a heparin-independent growth factor. Cancer Res. 2010;70:6093-103.
2. Trost E, Blom J, Soares Sde C, et al. Pangenomic study of Corynebacterium diphtheriae that provides insights into the genomic diversity of pathogenic isolates from cases of classical diphtheria, endocarditis, and pneumonia. J Bacteriol 2012; 194:3199-3215.
3. Qian Y, Lee JH, Holmes RK. Identification of a DtxR-regulated operon that is essential for siderophore-dependent iron uptake in Corynebacterium diphtheriae. J Bacteriol. 2002; 184:4846-4856.
4. Guedon E, Helmann JD. Origins of metal ion selectivity in the DtxR/MntR family of metalloregulators. Mol Microbiol. 2003; 48:495-506.
5. Collier R. Understanding the mode of action of diphtheria toxin: a perspective on progress during the 20th century. Toxicon. 2001; 39:1793-1803.
6. Kaczorek M, Delpeyroux F, Chenciner N, Streeck RE, Boquet P, Tiollais P. Nucleotide sequence and expression of the diphtheria tox228 gene in Escherichia coli. Science. 1983; 221:855-858.
7. Smith W, Tai P, Murphy J, Davis B. Precursor in cotranslational secretion of diphtheria toxin. J Bacteriol. 1980; 141:184-189.
8. Greenfield L, Bjorn MJ, Horn G, et al. Nucleotide sequence of the structural gene for diphtheria toxin carried by corynebacteriophage beta. Proc Natl Acad Sci. 1983; 80:6853-6857.
9. Zhang J, Wei H, Guo X, Hu M, Gao F, Li L, et al. Functional verification of the diphtheria toxin A gene in a recombinant system. J Anim Sci Biotechnol. 2012; 3:29.
10. Shafiee F, Aucoin MG, Jahanian Najafabadi A. Targeted Diphtheria Toxin Based Therapy: A Review Article. Front Microbiol. 2019; 10:2340.
11. Chenal A, Nizard P, Gillet D. Structure and function of diphtheria toxin: from pathology to engineering. J Toxicol. 2002; 21:321-359.
12. Holger B. uptake and trafficking of protein toxins book. springer international publishing; 2017.
13. Murphy JR. Mechanism of diphtheria toxin catalytic domain delivery to the eukaryotic cell cytosol and the cellular factors that directly participate in the process. Toxins. 2011; 3:294-308.
14. Louie GV, Yang W, Bowman ME, Choe S. Crystal structure of the complex of diphtheria toxin with an extracellular fragment of its receptor. Mol cell. 1997; 1:67-78.
15. Edwards JP, Zhang X, Mosser DM. The expression of heparin-binding epidermal growth factor-like growth factor by regulatory macrophages. J Immunol. 2009; 182:1929-1939.
16. Freeman MR, Yoo JJ, Raab G, Soker S, et al. Heparin-binding EGF-like growth factor is an autocrine growth factor for human urothelial cells and is synthesized by epithelial and smooth muscle cells in the human bladder. J Clin Invest. 1997; 99:1028-1036.
17. Thorne BA, Plowman GD. The heparin-binding domain of amphiregulin necessitates the precursor pro-region for growth factor secretion. Mol Cell biol. 1994; 14:1635-1646.
18. Lanzrein M, Garred O, Olsnes S, Sandvig K. Diphtheria toxin endocytosis and membrane translocation are dependent on the intact membrane-anchored receptor (HB-EGF precursor): studies on the cell-associated receptor cleaved by a metalloprotease in phorbol-ester-treated cells. Biochem J. 1995; 310:285-289.
19. Chiron MF, Fryling CM, FitzGerald DJ. Cleavage of pseudomonas exotoxin and diphtheria toxin by a furin-like enzyme prepared from beef liver. J Biol Chem. 1994; 269:18167-18176.
20. Lemichez E, Bomsel M, Devilliers G, et al. Membrane translocation of diphtheria toxin fragment A exploits early to late endosome trafficking machinery. Mol Microbiol. 1997; 23:445-457.
21. Watson P, Spooner RA. Toxin entry and trafficking in mammalian cells. Adv Drug Deliv Rev. 2006; 58:1581-1596.
22. Papini E, Rappuoli R, Murgia M, Montecucco C. Cell penetration of diphtheria toxin. Reduction of the interchain disulfide bridge is the rate-limiting step of translocation in the cytosol. J Biol Chem. 1993; 268:1567-1574.
23. Simon NC, Aktories K, Barbieri JT. Novel bacterial ADP-ribosylating toxins: structure and function. Nat Rev Microbiol. 2014; 12:599-611.
24. Collier RJ. Diphtheria toxin: mode of action and structure. Bacteriol rev. 1975; 39:54.
25. Giannini G, Rappuoli R, Ratti G. The amino-acid sequence of two non-toxic mutants of diphtheria toxin: CRM45 and CRM197. Nucleic Acids Res. 1984; 12:4063-4069.
26. Uchida T, Pappenheimer AM, Greany R. Diphtheria toxin and related proteins I. Isolation and properties of mutant proteins serologically related to diphtheria toxin. J Biol Chem. 1973; 248:3838-3844.
27. Brooke JS, Cha J-H, Eidels L. Diphtheria toxin: receptor interaction: association, dissociation, and effect of pH. Biochem Biophy Res Co. 1998; 248:297-302.
28. Broker M, Costantino P, DeTora L, McIntosh ED, Rappuoli R. Biochemical and biological characteristics of cross-reacting material 197 CRM197, a non-toxic mutant of diphtheria toxin: use as a conjugation protein in vaccines and other potential clinical applications. Biologicals. 2011; 39:195-204.
29. Mishra RPN, Yadav RSP, Jones C, et al. Structural and immunological characterization of E. coli derived recombinant CRM197 protein used as carrier in conjugate vaccines. Biosci Rep. 2018; 38.
30. Papini E, Schiavo G, Tomasi M, Colombatti M, Rappouli R, Montecucco C. Lipid interaction of diphtheria toxin and mutants with altered fragment B: 2. Hydrophobic photolabelling and cell intoxication. EurJ Biochem. 1987; 169:637-644.
31. Sandvig K, Olsnes S. Diphtheria toxin entry into cells is facilitated by low pH. J Cell biol. 1980; 87:828-832.
32. Demel R, Schiavo G, Kruigff Bd, Montecucco C. Lipid interaction of diphtheria toxin and mutants: a study with phospholipid and protein monolayers. Eur J Biochem. 1991; 197:481-486.
33. Hu VW, Holmes RK. Single mutation in the A domain of diphtheria toxin results in a protein with altered membrane insertion behavior. Biochim Biophys Acta.1987; 902:24-30.
34. Kent MS, Yim H, Murton JK, Satija S, Majewski J, Kuzmenko I. Oligomerization of membrane-bound diphtheria toxin (CRM197) facilitates a transition to the open form and deep insertion. Biophys J. 2008; 94:2115-2127.
35. Mitamura T, Higashiyama S, Taniguchi N, Klagsbrun M, Mekada E. Diphtheria toxin binds to the epidermal growth factor (EGF)-like domain of human heparin-binding EGF-like growth factor/diphtheria toxin receptor and inhibits specifically its mitogenic activity. J Biol Chem. 1995; 270:1015-1019.
36. Gregory H. Isolation and structure of urogastrone and its relationship to epidermal growth factor. Nature. 1975; 257:325-327.
37. Iwamoto R, Takagi M, Akatsuka J, Ono K, Kishi Y, Mekada E. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers. Monoclon Antib Immunodiagn Immunother. 2016; 35:73-82.
38. Zhao G, Liu L, Peek RM, Jr., Hao X, Polk DB, Li H, et al. Activation of Epidermal Growth Factor Receptor in Macrophages Mediates Feedback Inhibition of M2 Polarization and Gastrointestinal Tumor Cell Growth. J Biol Chem. 2016; 291:20462-20472.
39. Negahdari B, Shahosseini Z, Baniasadi V. Production of human epidermal growth factor using adenoviral based system. Res Pharm Sci. 2016; 11:43-48.
40. Miyazono K. Ectodomain shedding of HB-EGF: a potential target for cancer therapy. J Biochem. 2012; 151:1-3.
41. Kim GY, Besner GE, Steffen CL, et al. Purification of heparin-binding epidermal growth factor-like growth factor from pig uterine luminal flushings, and its production by endometrial tissues. Biol Reprod. 1995; 52:561-571.
42. Higashiyama S, Lau K, Besner G, Abraham JA, Klagsbrun M. Structure of heparin-binding EGF-like growth factor. Multiple forms, primary structure, and glycosylation of the mature protein. J Biol Chem. 1992; 267:6205-6212.
43. Uchiyama-Tanaka Y, Matsubara H, Mori Y, et al. Involvement of HB-EGF and EGF receptor transactivation in TGF-β–mediated fibronectin expression in mesangial cells. Kidney Int. 2002; 62:799-808.
44. Vinante F, Rigo A. Heparin-binding epidermal growth factor-like growth factor/diphtheria toxin receptor in normal and neoplastic hematopoiesis. Toxins. 2013; 5:1180-1201.
45. Eidels L, Ross LL, Hart DA. Diphtheria toxin-receptor interaction: a polyphosphate-insensitive diphtheria toxin-binding domain. Biochem Bioph Res Co. 1982; 109:493-499.
46. Brooke JS, Cha J-H. Molecular characterization of key diphtheria toxin: receptor interactions. Biochem Bioph Res Co. 2000; 275:374-381.
47. Wieduwilt MJ, Moasser MM. The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci. 2008; 65:1566-1584.
48. Wang Q, Chen X, Wang Z. Dimerization drives EGFR endocytosis through two sets of compatible endocytic codes. J Cell Sci. 2015; 128:935-950.
49. Bodnar RJ. Epidermal Growth Factor and Epidermal Growth Factor Receptor: The Yin and Yang in the Treatment of Cutaneous Wounds and Cancer. Adv Wound Care. 2013; 2:24-29.
50. Purba ER, Saita EI, Maruyama IN. Activation of the EGF Receptor by Ligand Binding and Oncogenic Mutations: The "Rotation Model". Cells. 2017; 6.
51. Rayego-Mateos S, Rodrigues-Diez R, Morgado-Pascual JL, et al. Role of Epidermal Growth Factor Receptor (EGFR) and Its Ligands in Kidney Inflammation and Damage. Mediators Inflamm. 2018; 2018:8739473.
52. Roskoski R, Jr. Small molecule inhibitors targeting the EGFR/ErbB family of protein-tyrosine kinases in human cancers. Pharmacol Res. 2019; 139:395-411.
53. Walsh AM, Lazzara MJ. Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells. J Cell Sci. 2013; 126:4339-4348.
54. Miyamoto S, Yagi H, Yotsumoto F, et al. New approach to cancer therapy: heparin binding-epidermal growth factor-like growth factor as a novel targeting molecule. Anticancer Res. 2007; 27:3713-3721.
55. Zandi R, Larsen AB, Andersen P, Stockhausen MT, Poulsen HS. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal. 2007; 19:2013-2023.
56. Normanno N, De Luca A, Bianco C, et al. Epidermal growth factor receptor (EGFR) signaling in cancer. Gene. 2006; 366:2-16.
57. Koshikawa N, Mizushima H, Minegishi T, et al. Proteolytic activation of heparin-binding EGF-like growth factor by membrane-type matrix metalloproteinase-1 in ovarian carcinoma cells. Cancer Sci. 2011; 102:111-116.
58. Amedei A, Asadzadeh F, Papi F, et al. A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple Negative Breast Cancer. iScience. 2020:101250.
59. Song C, Zheng X-J, Guo H, et al. Fluorine-modified sialyl-Tn-CRM197 vaccine elicits a robust immune response. Glycoconj J. 2019; 36(5):399-408.
60. Mawas F, Niggemann J, Jones C, Corbel MJ, Kamerling JP, Vliegenthart JF. Immunogenicity in a mouse model of a conjugate vaccine made with a synthetic single repeating unit of type 14 pneumococcal polysaccharide coupled to CRM197. Infect Immun. 2002; 70:5107-5114.
61. Zhang H-L, Yuan C, Zhang D-M, et al. A novel combined conjugate vaccine: enhanced immunogenicity of bFGF with CRM197 as a carrier protein. Mol Med Rep. 2011; 4:857-863.
62. Huiyong Z, Yong L, Didier M, et al. Enhanced inhibition of murine prostatic carcinoma growth by immunization with or administration of viable human umbilical vein endothelial cells and CRM197. Braz J Med Biol Res. 2011; 44:140-148.
63 .Jaffe J, Wucherer K, Sperry J, Zou Q, Chang Q, Massa MA, et al. Effects of conformational changes in peptide–CRM197 conjugate vaccines. Bioconjugate chemistry. 2018;30(1):47-53.
64. Amedei A, Asadzadeh F, Papi F, Vannucchi MG, Ferrucci V, Bermejo IA, et al. A Structurally Simple Vaccine Candidate Reduces Progression and Dissemination of Triple-Negative Breast Cancer. Iscience. 2020;23(6):101250. 65.Wang L, Wang P, Liu Y, Xue Y. Regulation of cellular growth, apoptosis, and Akt activity in human U251 glioma cells by a combination of cisplatin with CRM197. Anti-cancer drugs. 2012;23(1):81-9.
66 . Buzzi S, Rubboli D, Buzzi G, Buzzi AM, Morisi C, Pironi F. CRM197 (nontoxic diphtheria toxin): effects on advanced cancer patients. Cancer Immunology, Immunotherapy. 2004;53(11):1041-8.
67. Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S. Synergistic anti‐tumor effect of paclitaxel with CRM197, an inhibitor of HB‐EGF, in ovarian cancer. International journal of cancer. 2009;124(6):1429-39.
68. Barbolina MV. Molecular Mechanisms Regulating Organ-Specific Metastases in Epithelial Ovarian Carcinoma. Cancers (Basel). 2018;10(11).
69. Mitra AK. Ovarian Cancer Metastasis: A Unique Mechanism of Dissemination. Tumor Metastasis: IntechOpen; 2016.
70. Slack-Davis JK, Atkins KA, Harrer C, Hershey ED, Conaway M. Vascular cell adhesion molecule-1 is a regulator of ovarian cancer peritoneal metastasis. Cancer research. 2009;69(4):1469-76.
71. Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10(1):9-22.
72.Yagi H, Yotsumoto F, Miyamoto S. Heparin-binding epidermal growth factor–like growth factor promotes transcoelomic metastasis in ovarian cancer through epithelial-mesenchymal transition. Molecular cancer therapeutics. 2008;7(10):3441-51.
73. Yotsumoto F, Sanui A, Fukami T, Shirota K, Horiuchi S, Tsujioka H, et al. Efficacy of ligand-based targeting for the EGF system in cancer. Anticancer Res. 2009;29(11):4879-85.
74.Yagi H, Yotsumoto F, Sonoda K, Kuroki M, Mekada E, Miyamoto S. Synergistic anti-tumor effect of paclitaxel with CRM197, an inhibitor of HB-EGF, in ovarian cancer. International journal of cancer. 2009;124(6):1429-39.
75.Martarelli D, Pompei P, Mazzoni G. Inhibition of adrenocortical carcinoma by diphtheria toxin mutant CRM197. Chemotherapy. 2009;55(6):425-32.
76. Sanui A, Yotsumoto F, Tsujioka H, Fukami T, Horiuchi S, Shirota K, et al. HB-EGF inhibition in combination with various anticancer agents enhances its antitumor effects in gastric cancer. Anticancer research. 2010;30(8):3143-9. 77.Yotsumoto F, Oki E, Tokunaga E, Maehara Y, Kuroki M, Miyamoto S. HB‐EGF orchestrates the complex signals involved in triple‐ negative and trastuzumab‐resistant breast cancer. International journal of cancer. 2010;127(11):2707-17.
78.Pu P, Kang C, Zhang Z, Liu X, Jiang H. Downregulation of PIK3CB by siRNA suppresses malignant glioma cell growth in vitro and in vivo. Technology in cancer research & treatment. 2006;5(3):271-80.
79. Pu P, Kang C, Li J, Jiang H. Antisense and dominant-negative AKT2 cDNA inhibits glioma cell invasion. Tumor Biology. 2004;25(4):172-8.
80.Pu P, Kang C, Li J, Jiang H, Cheng J. The effects of antisense AKT2 RNA on the inhibition of malignant glioma cell growth in vitro and in vivo. Journal of neuro-oncology. 2006;76(1):1.
81. Dateoka S, Ohnishi Y, Kakudo K. Effects of CRM197, a specific inhibitor of HB-EGF, in oral cancer. Medical molecular morphology. 2012;45(2):91-7.
82. Tanaka Y, Miyamoto S, Suzuki SO, Oki E, Yagi H, Sonoda K, et al. Clinical significance of heparin-binding epidermal growth factor–like growth factor and a disintegrin and metalloprotease 17 expression in human ovarian cancer. Clinical Cancer Research. 2005;11(13):4783-92.
83. Nam SO, Yotsumoto F, Miyata K, Souzaki R, Taguchi T, Kuroki M, et al. Validity of HB-EGF as target for human neuroblastoma therapy. Anticancer research. 2015;35(8):4433-40.
84. Nam SO, Yotsumoto F, Miyata K, Fukagawa S, Odawara T, Manabe S, et al. Anti-tumor effect of intravenous administration of CRM197 for triple-negative breast cancer therapy. Anticancer research. 2016;36(7):3651-7. 85.Yotsumoto F, Fukagawa S, Miyata K, Nam SO, Katsuda T, Miyahara D, et al. HB-EGF Is a Promising Therapeutic Target for Lung Cancer with Secondary Mutation of EGFRT790M. Anticancer research. 2017;37(7):3825-31.
86. Dai L, Pan Q, Peng Y, Huang S, Liu J, Chen T, et al. p53 Plays a Key Role in the Apoptosis of Human Ovarian Cancer Cells Induced by Adenovirus-Mediated CRM197. Hum Gene Ther. 2018;29(8):916-26.
87. Zaorsky NG, Churilla TM, Egleston BL, Fisher SG, Ridge JA, Horwitz EM, et al. Causes of death among cancer patients. Ann Oncol. 2017;28(2):400-7.
88.Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424.
89. Escaff S, Fernandez J, Gonzalez L, Suárez A, Gonzalez-Reyes S, Gonzalez J, et al. Study of matrix metalloproteinases and their inhibitors in prostate cancer. British journal of cancer. 2010;102(5):922-9.
90. Society AC. Cancer Treatment & Survivorship Facts & Figures 2019–2021. American Cancer Society Atlanta, GA; 2019.
91. Tang XH, Deng S, Li M, Lu MS. Cross-reacting material 197 reverses the resistance to paclitaxel in paclitaxel-resistant human ovarian cancer. Tumour Biol. 2016;37(4):5521-8.
92.Tang X, Lu M, Li C, Deng S, Li M. [Expression and significance of heparin binding-epidermal growth factor-like growth factor in paclitaxel-resistant ovarian cancer]. Zhonghua Fu Chan Ke Za Zhi. 2014;49(7):517-22.
93. Hu Y, Lin X, Wang P, Xue YX, Li Z, Liu LB, et al. CRM197 in Combination With shRNA Interference of VCAM-1 Displays Enhanced Inhibitory Effects on Human Glioblastoma Cells. J Cell Physiol. 2015;230(8):1713-28.
94. Fiorentini G, Banfi R, Dentico P, Moriconi S, Turrisi G, Pelagotti F, et al. Clinical experience of treatment of metastatic melanoma and solid tumours adopting a derivative of diphtheria toxin: cross-reacting material 197. In Vivo. 2013;27(2):197-202.
95. Rivetti S, Lauriola M, Voltattorni M, Bianchini M, Martini D, Ceccarelli C, et al. Gene expression profile of human colon cancer cells treated with cross-reacting material 197, a diphtheria toxin non-toxic mutant. Int J Immunopathol Pharmacol. 2011;24(3):639-49.
96. Kunami N, Yotsumoto F, Ishitsuka K, Fukami T, Odawara T, Manabe S, et al. Antitumor effects of CRM197, a specific inhibitor of HB-EGF, in T-cell acute lymphoblastic leukemia. Anticancer Res. 2011;31(7):2483-8.
97. Cheng L-m, Jiang J-g, Sun Z-y, Chen C, Dackor RT, Zeldin DC, et al. The epoxyeicosatrienoic acid-stimulated phosphorylation of EGF-R involves the activation of metalloproteinases and the release of HB-EGF in cancer cells. Acta pharmacologica Sinica. 2010;31(2):211-8.
98. Tsujioka H, Yotsumoto F, Shirota K, Horiuchi S, Yoshizato T, Kuroki M, et al. Emerging strategies for ErbB ligand-based targeted therapy for cancer. Anticancer research. 2010;30(8):3107-12.
99. Tang Xh, Li H, Zheng Xs, Lu Ms, An Y, Zhang Xl. CRM197 reverses paclitaxel resistance by inhibiting the NAC‐1/Gadd45 pathway in paclitaxel‐resistant ovarian cancer cells. Cancer medicine. 2019;8(14):6426-36.
100.Fogar P, Navaglia F, Basso D, Zambon C, Moserle L, Indraccolo S, et al. Heat-induced transcription of diphtheria toxin A or its var iants, CRM176 and CRM197: implications for pancreatic cancer gene therapy. Cancer Gene Therapy. 2010;17(1):58-68.
101.Tsujioka H, Yotsumoto F, Hikita S, Ueda T, Kuroki M, Mi - yamoto S. Targeting the heparin-binding epidermal growth fac - tor-like growth factor in ovarian cancer therapy. Current Opinion in Obstetrics and Gynecology. 2011;23(1):24-30.
102. Cheng K, Xie G, Raufman J-P. Matrix metalloproteinase-7-cata - lyzed release of HB-EGF mediates deoxycholyltaurine-induced proliferation of a human colon cancer cell line. Biochemical pharmacology. 2007;73(7):1001-12.
103. Weerakkody LR, Witharana C. The role of bacterial toxins and spores in cancer therapy. Life sciences. 2019;235:116839.
104.Agarwal V, Subash A, Nayar RC, Rao V. Is EGFR really a thera - peutic target in head and neck cancers? J Surg Oncol. 2019.
105. Anderson NG, Ahmad T, Chan K, Dobson R, Bundred NJ. ZD1839 (Iressa), a novel epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor, potently inhibits the growth of EGFR‐positive cancer cell lines with or without erbB2 overex - pression. International journal of cancer. 2001;94(6):774-82.
106. Sigismund S, Avanzato D, Lanzetti L. Emerging functions of the EGFR in cancer. Mol Oncol. 2018;12(1):3-20.
107. Tang XH, Deng S, Li M, Lu MS. The anti-tumor effect of cross-re - acting material 197, an inhibitor of heparin-binding EGF-like growth factor, in human resistant ovarian cancer. Biochem Bio - phys Res Commun. 2012;422(4):676-80.
108. Miyata K, Yotsumoto F, Nam SO, Odawara T, Manabe S, Ishikawa T, et al. Contribution of transcription factor, SP1, to the promo - tion of HB-EGF expression in defense mechanism against the treatment of irinotecan in ovarian clear cell carcinoma. Cancer Med. 2014;3(5):1159-69.
109. Miyamoto S, Yotsumoto F, Ueda T, Fukami T, Sanui A, Miya - ta K, et al. BK-UM in patients with recurrent ovarian cancer or peritoneal cancer: a first-in-human phase-I study. BMC Cancer. 2017;17(1):89.
110. Huang YL, Hung JT, Cheung SK, Lee HY, Chu KC, Li ST, et al. Carbohydrate-based vaccines with a glycolipid adjuvant for breast cancer. Proc Natl Acad Sci U S A. 2013;110(7):2517-22.
111.Seiki M. Membrane-type 1 matrix metalloproteinase: a key en - zyme for tumor invasion. Cancer letters. 2003;194(1):1-11.
112. Fukushima R, Kasamatsu A, Nakashima D, Higo M, Fushimi K, Kasama H, et al. Overexpression of Translocation Associated Membrane Protein 2 Leading to Cancer-Associated Matrix Met - alloproteinase Activation as a Putative Metastatic Factor for Hu - man Oral Cancer. J Cancer. 2018;9(18):3326-33.
113. Conlon GA, Murray GI. Recent advances in understanding the roles of matrix metalloproteinases in tumour invasion and me - tastasis. J Pathol. 2019;247(5):629-40.
114. Koshikawa N. MT1-MMP cleaves off the NH2-terminal portion of HB-EGF and converts it into a heparin-independent growth factor. Cancer Res. 2010;70:6093-103.
Files | ||
Issue | Vol 13 No 1 (2021) | |
Section | Reviews | |
DOI | https://doi.org/10.18502/bccr.v13i1.8828 | |
Keywords | ||
cross-reacting materials (CRM197) diphtheria toxin (DT) heparin-binding EGF-like growth factor (HB-EGF) epidermal growth factor receptor (EGFR) cancer |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Aminian M, Tanhapour M, Golestani A, Vaisi-Raygani A. Cross-Reacting Material 197, a Specific Inhibitor of HB-EGF, and Its Anticancer Effects. Basic Clin Cancer Res. 2021;13(1):30-50.