A review on Application of In Vitro and In Vivo Models of Cancerous Tumors for Studying Hyperthermia Effect

  • Shadab Bagheri Khoulenjani Polymer and Color Engineering Department
  • Saeid Amanpour Cancer Biology Research Center, Tehran University of Medical Sciences
  • Hamid Mirzadeh 1 Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
  • Zahra Zahedi Tabar 1 Department of Polymer and Color Engineering, Amirkabir University of Technology, Tehran, Iran
Keywords: hyperthermia studies, in vivo models, in vitro models, in silico models, nanoparticle diffusion media.


Hyperthermia is a novel method for cancer therapy. For gaining the best control over heating in hyperthermia, using magnetic nanoparticles is suggested. Local control of heat is very important in this technique otherwise healthy tissues around cancer tumor will be damaged so measuring temperature changes are necessary to determine the optimum conditions in hyperthermia which can affect the final results, significantly. Type and concentration of nanoparticles and nanoparticle distribution within the cancerous tissue are the key factors affecting temperature distribution in hyperthermia process. One of the main factors influencing nanoparticle distribution is characteristics of diffusion media such as chemical composition, morphological and mechanical features affect the diffusion of nanoparticles at cancer site. In this review, most common in vitro and in vivo media and their influence on the results of hyperthermia are discussed, also in silico will pointed out as a computational model. Buffer solutions, cell cultures, microfluidics, dead tissues and animal models are some of the in vitro media that are discussed in this review paper. In addition, some of the animal models used for study hyperthermia are pointed out.


1. Cancer Facts & Figures 2017. 2017.
2. Salunkhe a B, Khot VM, Pawar SH. Magnetic hyperthermia with magnetic nanoparticles: a status review. Curr Top Med Chem. 2014;14(5):572–94.
3. Javidi M, Heydari M, Attar MM, Haghpanahi M, Karimi A, Navidbakhsh M, et al. Cylindrical agar gel with fluid flow subjected to an alternating magnetic field during hyperthermia. Int J Hyperth. Informa UK Ltd; 2015;31(1):33–9.
4. Golovin YI, Gribanovsky SL, Golovin DY, Zhigachev AO, Klyachko NL, Majouga AG, et al. The dynamics of magnetic nanoparticles exposed to non-heating alternating magnetic field in biochemical applications: theoretical study. J Nanoparticle Res. Journal of Nanoparticle Research; 2017;19(2).
5. Saeedi M, Vahidi O, Goodarzi V, Saeb MR, Izadi L, Mozafari M. A new prospect in magnetic nanoparticle-based cancer therapy: Taking credit from mathematical tissue-mimicking phantom brain models. Nanomedicine Nanotechnology, Biol Med. Elsevier Inc.; 2017;13(8):2405–14.
6. Kalambur VS, Han B, Hammer BE, Shield TW, Bischof JC. In vitro characterization of movement, heating and visualization of magnetic nanoparticles for biomedical applications. Nanotechnology. 2005;16(8):1221–33.
7. Attar MM, Barati F, Rezaei G, Adelinia B. In-vitro experimental analysis of magnetic fluid hyperthermia in soft tissue. J Mech Sci Technol. 2017;31(1):465–72.
8. Kolosnjaj-Tabi J, Marangon I, Nicolas-Boluda A, Silva AKA, Gazeau F. Nanoparticle-based hyperthermia, a local treatment modulating the tumor extracellular matrix. Pharmacol Res. Elsevier Ltd; 2017;
9. Bokharaei M, Schneider T, Dutz S, Stone RC, Mefford OT, Häfeli UO. Production of monodispersed magnetic polymeric microspheres in a microfluidic chip and 3D simulation. Microfluid Nanofluidics. Springer Berlin Heidelberg; 2016;20(1):1–14.
10. Kumar CSSR, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev [Internet]. Elsevier B.V.; 2011;63(9):789–808. Available from: http://dx.doi.org/10.1016/j.addr.2011.03.008
11. Avazzadeh R, Vasheghani-Farahani E, Soleimani M, Amanpour S, Sadeghi M. Synthesis and application of magnetite dextran-spermine nanoparticles in breast cancer hyperthermia. Prog Biomater. Springer Berlin Heidelberg; 2017;
12. Lin C, Ho K. Hyperthermia effect of surface-modified magnetite nanoparticles in a microfluidic system. NSTI-nanotech. 2007;2:425–8.
13. Taala N. synthesis of chitosan based nanoparticles and study the effect of nanoparticles properties on formation of protein corona. Amirkabir University of technology; 2017.
14. Attar MM, Haghpanahi M, Amanpour S, Mohaqeq M. Analysis of bioheat transfer equation for hyperthermia cancer treatment †. J Mech Sci Technol. 2014;28(2):763–71.
15. Gao F, Cai Y, Zhou J, Xie X, Ouyang W, Zhang Y, et al. Pullulan acetate coated magnetite nanoparticles for hyper-thermia: Preparation, characterization and in vitro experiments. Nano Res. 2010;3(1):23–31.
16. Sonvico F, Mornet S, Vasseur S, Dubernet C, Jaillard D, Degrouard J, et al. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: Synthesis, physicochemical characterization, and in vitro experiments. Bioconjug Chem. 2005;16(5):1181–8.
17. Fortin JP, Wilhelm C, Servais J, Ménager C, Bacri JC, Gazeau F. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc. 2007;129(9):2628–35.
18. Nemati Z, Alonso J, Martinez LM, Khurshid H, Garaio E, Garcia JA, et al. Enhanced Magnetic Hyperthermia in Iron Oxide Nano-Octopods: Size and Anisotropy Effects. J Phys Chem C. 2016;120(15):8370–9.
19. Nemati Z, Salili SM, Alonso J, Ataie A, Das R, Phan MH, et al. Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: Does size matter? J Alloys Compd. Elsevier B.V; 2017;714:709–14.
20. Murase K, Oonoki J, Takata H, Song R, Angraini A, Ausanai P, et al. Simulation and experimental studies on magnetic hyperthermia with use of superparamagnetic iron oxide nanoparticles. Radiol Phys Technol. 2011;4(2):194–202.
21. Iglesias G, Delgado A V., Kujda M, Ramos-Tejada MM. Magnetic hyperthermia with magnetite nanoparticles: electrostatic and polymeric stabilization. Colloid Polym Sci. Colloid and Polymer Science; 2016;294(10):1541–50.
22. Guibert C, Dupuis V, Peyre V, Fresnais J, Guibert C, Dupuis V, et al. Hyperthermia of Magnetic Nanoparticles : An Experimental Study of the Role of Aggregation. J Phys Chem C. 2015;28148–54.
23. Bahadorimehr A, Rashemi Z, Majlis BY. The Influence of Magnetic Nanoparticles’ Size on Trapping Efficiency in a Microfluidic Device. Int J Biosci Biochem Bioinforma. 2015;5(2):132–9.
24. Wang F, Li Y, Chen L, Chen D, Wu X, Wang H. Mapping of hyperthermic tumor cell death in a microchannel under unidirectional heating. Biomicrofluidics. 2012;6(1).
25. Alvarez SS, Huerta LFE, Vargas AV, López J, Silva JG, González CA. Characterization of Breast Cancer Radiofrequency Ablation Assisted with Magnetic Nanoparticles : In Silico and in Vitro Study. Electromagn Anal Appl. 2016;8(January):1–7.
26. Holligan DL, Gillies GT, Dailey JP. Magnetic guidance of ferrofluidic nanoparticles in an in vitro model of intraocular retinal repair. Nanotechnology. 2003;14(6):661–6.
27. Heydari M, Javidi M, Attar MM, Karimi A, Navidbakhsh M, Haghpanahi M, et al. MAGNETIC FLUID HYPERTHERMIA IN A CYLINDRICAL. J Mech Med Biol. 2015;15(5):1–16.
28. Salloum M, Ma RH, Weeks D, Zhu L. Controlling nanoparticle delivery in magnetic nanoparticle hyperthermia for cancer treatment: Experimental study in agarose gel. Int J Hyperth. 2008;24(4):337–45.
29. Lahiri BB, Ranoo S, Zaibudeen AW, Philip J. Magnetic hyperthermia in magnetic nanoemulsions: Effects of polydispersity, particle concentration and medium viscosity. J Magn Magn Mater. Elsevier B.V.; 2017;441:310–27.
30. Attar MM, Haghpanahi M, Shahverdi H, Imam A. Thermo-mechanical analysis of soft tissue in local hyperthermia treatment. J Mech Sci Technol. 2016 Mar;30(3):1459–69.
31. Zimerman B, M. A, Ulmer J, Blummel J, Besser A, Spatz JP, et al. Formation of focal adhesion-stress fibre complexes coordinated by adhesive and non-adhesive surface domains. IEEE Proc nanobiotechnology. 2004;151(2):207–11.
32. Laurent S, Dutz S, Häfeli UO, Mahmoudi M. Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. Elsevier B.V.; 2011;166(1–2):8–23.
33. Dennis CL, Jackson AJ, Borchers JA, Hoopes PJ, Strawbridge R, Foreman AR, et al. Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia. Nanotechnology. 2009;20(39):395103.
34. Dutz S, Kettering M, Hilger I, Müller R, Zeisberger M. Magnetic multicore nanoparticles for hyperthermia—influence of particle immobilization in tumour tissue on magnetic properties. Nanotechnology. 2011;22(26):265102.
35. Khandhar AP, Ferguson RM, Simon JA, Krishnan KM. Tailored magnetic nanoparticles for optimizing magnetic fluid hyperthermia. J Biomed Mater Res - Part A. 2012;100 A(3):728–37.
36. Kossatz S, Ludwig R, Dähring H, Ettelt V, Rimkus G, Marciello M, et al. High therapeutic efficiency of magnetic hyperthermia in xenograft models achieved with moderate temperature dosages in the tumor area. Pharm Res. 2014;31(12):3274–88.
37. Balivada S, Rachakatla RS, Wang H, Samarakoon TN, Dani RK, Pyle M, et al. A / C magnetic hyperthermia of melanoma mediated by iron ( 0 )/ iron oxide core / shell magnetic nanoparticles : a mouse study. BMC Cancer. 2010;10:119.
38. LeBrun A, Ma R, Zhu L. MicroCT image based simulation to design heating protocols in magnetic nanoparticle hyperthermia for cancer treatment. J Therm Biol. Elsevier; 2016;62:129–37.
39. Wang H, Wu J, Zhuo Z, Tang J. A three-dimensional model and numerical simulation regarding thermoseed mediated magnetic induction therapy conformal hyperthermia. 2016;24.
40. Polishchuk DM, Tykhonenko-polishchuk YO, Bodnaruk SOS V, Kulyka MMI. Features of the magnetic state of ensembles of nanoparticles of substituted manganites : Experiment and model calculations. 2017;570.
41. Ruggiero MR, Crich SG, Sieni E, Adolphi NL, Huber DL, Bryant HC, et al. Magnetic dynamics of ferrofluids : mathematical models and experimental investigations. J Phys D Appl Phys. IOP Publishing; :aa590b.
42. Slabu I, Baumann M, Alizai PH, Schmeding M. Establishment of a biophysical model to optimize endoscopic targeting of magnetic nanoparticles for cancer treatment. 2017;5933–40.
43. Hergt R, Dutz S, Zeisberger M. Validity limits of the N ´ eel relaxation model of magnetic nanoparticles for hyperthermia. 2010;015706:1–6.
44. Bellizzi G, Bucci OM, Chirico G. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. 2016;6736(June).
How to Cite
Bagheri Khoulenjani S, Amanpour S, Mirzadeh H, Zahedi Tabar Z. A review on Application of In Vitro and In Vivo Models of Cancerous Tumors for Studying Hyperthermia Effect. BCCR. 11(1).