Reviews

Polymorphisms in insulin pathway genes and cancer risk

Abstract

Background:Insulin is a big hormone (5808 Da) generally produced with the aid of the pancreas. Insulin receptors (IR) are found in neurons and glial cells. Insulin resistance has been related to increased plasma insulin levels, glucose intolerance, elevated insulin-like growth factor-1 (IGF-I), glucose and free fatty acids, body mass index, and an elevated risk for colorectal cancers. Proinflammatory cytokines, boom components, and hormones secreted by adipocytes play a key role in colorectal cancer etiology. Acetyl-CoA acetyltransferase (ACAT1) mediates insulin-precipitated cell proliferation and metastatic outcomes in colorectal cancer cells. Therefore, miRNAs might serve as a biological connection between metabolic changes linked to obesity and the beginning and progression of colorectal cancer (CRC). Furthermore, these findings shed new light on weight problems as a CRC danger component in which miRNA dysregulation potentially plays a role. The role of IGFs in CRC is investigated by examining the association of two genetic polymorphisms in IGFBP-3 (a G → C single nucleotide polymorphism) and IGF-1 (a cytosine-adenosine dinucleotide repeat) with CRC risk in addition to the possibility of the other interventions, including physical activity, body mass index (BMI), and the use of postmenopausal hormones. These factors can exert their effects by modifying IGF-1 and the related binding proteins (IGFBP). Furthermore, the IGFBP-3 genotype can lead to a substantial effect modifier in the association between CRC and risk factors.    It has been found that functional polymorphisms in the pathway of insulin genes, including IGFBPI, INSR, INS, and insulin receptor substrates 1 and 2 (IRS1 and IRS2), can be related to CRC.
1. Shaughness M, Acs D, Brabazon F, Hockenbury N, Byrnes KR. Role of insulin in neurotrauma and neurodegeneration: a review. Frontiers in neuroscience. 2020;14:547175.
2. Kumor A, Daniel P, Pietruczuk M, Małecka-Panas E. Serum leptin, adiponectin, and resistin concentration in colorectal adenoma and carcinoma (CC) patients. International journal of colorectal disease. 2009;24(3):275-81.
3. Uyar GO, Sanlier N. Association of adipokines and insulin, which have a role in obesity, with colorectal cancer. The Eurasian Journal of Medicine. 2019;51(2):191.
4. Stojsavljević S, Jukić LV, Kralj D, Duvnjak M. The relationship between insulin resistance and colon cancer. Endocrine Oncology and Metabolism. 2016;2(1):24-33.
5. Siddle K. Signalling by insulin and IGF receptors: supporting acts and new players. Journal of molecular endocrinology. 2011;47(1):R1-R10.
6. Zeljkovic A, Mihajlovic M, Stefanovic A, Zeljkovic D, Trifunovic B, Miljkovic M, et al. Potential use of serum insulin‐like growth factor 1 and E‐cadherin as biomarkers of colorectal cancer. Colorectal Disease. 2020;22(12):2078-86.
7. Alles J, Fehlmann T, Fischer U, Backes C, Galata V, Minet M, et al. An estimate of the total number of true human miRNAs. Nucleic acids research. 2019;47(7):3353-64.
8. Sung H, Siegel RL, Rosenberg PS, Jemal A. Emerging cancer trends among young adults in the USA: analysis of a population-based cancer registry. The Lancet Public Health. 2019;4(3):e137-e47.
9. Murphy N, Carreras-Torres R, Song M, Chan AT, Martin RM, Papadimitriou N, et al. Circulating levels of insulin-like growth factor 1 and insulin-like growth factor binding protein 3 associate with risk of colorectal cancer based on serologic and Mendelian randomization analyses. Gastroenterology. 2020;158(5):1300-12. e20.
10. Allen N, Sudlow C, Downey P, Peakman T, Danesh J, Elliott P, et al. UK Biobank: Current status and what it means for epidemiology. Health Policy and Technology. 2012;1(3):123-6.
11. Biobank U. UK Biobank Biomarker Project-companion document to accompany serum biomarker data. Volume; 2019.
12. Qiu B, Chu L-Y, Li X-X, Peng Y-H, Xu Y-W, Xie J-J, et al. Diagnostic Value of Serum Insulin-Like Growth Factor Binding Protein 7 (IGFBP7) in Colorectal Cancer. OncoTargets and therapy. 2020;13:12131.
13. Chen X, Liang H, Song Q, Xu X, Cao D. Insulin promotes progression of colon cancer by upregulation of ACAT1. Lipids in Health and Disease. 2018;17(1):1-7.
14. Sinicrope FA, Foster NR, Sargent DJ, O'Connell MJ, Rankin C. Obesity Is an Independent Prognostic Variable in Colon Cancer SurvivorsObesity and Colon Cancer Prognosis. Clinical cancer research. 2010;16(6):1884-93.
15. Lee J, Jeon JY, Meyerhardt JA. Diet and lifestyle in survivors of colorectal cancer. Hematology/Oncology Clinics. 2015;29(1):1-27.
16. Rogers MA, Liu J, Song B-L, Li B-L, Chang CC, Chang T-Y. Acyl-CoA: cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. The Journal of steroid biochemistry and molecular biology. 2015;151:102-7.
17. Lee SS-Y, Li J, Tai JN, Ratliff TL, Park K, Cheng J-X. Avasimibe encapsulated in human serum albumin blocks cholesterol esterification for selective cancer treatment. ACS nano. 2015;9(3):2420-32.
18. Cirillo F, Catellani C, Sartori C, Lazzeroni P, Amarri S, Street ME. Obesity, insulin resistance, and colorectal cancer: could miRNA dysregulation play a role? International journal of molecular sciences. 2019;20(12):2922.
19. Deal C, Ma J, Wilkin Fo, Paquette J, Rozen F, Ge B, et al. Novel promoter polymorphism in insulin-like growth factor-binding protein-3: correlation with serum levels and interaction with known regulators. The Journal of Clinical Endocrinology & Metabolism. 2001;86(3):1274-80.
20. Liu L, Fan Q, Zhang F, Guo X, Liang X, Du Y, et al. A genomewide integrative analysis of GWAS and eQTLs data identifies multiple genes and gene sets associated with obesity. BioMed research international. 2018;2018.
21. Igder S, Mohammadiasl J, Mokarram P. Altered miR-21, miRNA-148a expression in relation to KRAS mutation status as indicator of adenoma-carcinoma transitional pattern in colorectal adenoma and carcinoma lesions. Biochemical genetics. 2019;57(6):767-80.
22. Koh E-H, Chernis N, Saha PK, Xiao L, Bader DA, Zhu B, et al. miR-30a remodels subcutaneous adipose tissue inflammation to improve insulin sensitivity in obesity. Diabetes. 2018;67(12):2541-53.
23. Pollak MN, Perdue JF, Margolese RG, Baer K, Richard M. Presence of somatomedin receptors on primary human breast and colon carcinomas. Cancer letters. 1987;38(1-2):223-30.
24. Guo Y-S, Narayan S, Yallampalli C, Singh P. Characterization of insulinlike growth factor I receptors in human colon cancer. Gastroenterology. 1992;102(4):1101-8.
25. Koenuma M, Yamori T, Tsuruo T. Insulin and insulin‐like growth factor 1 stimulate proliferation of metastatic variants of colon carcinoma 26. Japanese journal of cancer research. 1989;80(1):51-8.
26. Björk J, Nilsson J, Hultcrantz R, Johansson C. Growth-regulatory effects of sensory neuropeptides, epidermal growth factor, insulin, and somatostatin on the non-transformed intestinal epithelial cell line IEC-6 and the colon cancer cell line HT 29. Scandinavian journal of gastroenterology. 1993;28(10):879-84.
27. Furlanetto RW, Harwell SE, Frick KK. Insulin-like growth factor-I induces cyclin-D1 expression in MG63 human osteosarcoma cells in vitro. Molecular Endocrinology. 1994;8(4):510-7.
28. Minshall C, Arkins S, Straza J, Conners J, Dantzer R, Freund GG, et al. IL-4 and insulin-like growth factor-I inhibit the decline in Bcl-2 and promote the survival of IL-3-deprived myeloid progenitors. The Journal of Immunology. 1997;159(3):1225-32.
29. Wang L, Ma W, Markovich R, Lee W-L, Wang PH. Insulin-like growth factor I modulates induction of apoptotic signaling in H9C2 cardiac muscle cells. Endocrinology. 1998;139(3):1354-60.
30. Jones JI, Clemmons DR. Insulin-like growth factors and their binding proteins: biological actions. Endocrine reviews. 1995;16(1):3-34.
31. Ferry Jr RJ, Cerri RW, Cohen P. Insulin-like growth factor binding proteins: new proteins, new functions. Hormone Research in Paediatrics. 1999;51(2):53-67.
32. Clemmons DR. Insulin-like growth factor binding proteins and their role in controlling IGF actions. Cytokine & growth factor reviews. 1997;8(1):45-62.
33. Firth SM, Baxter RC. Cellular actions of the insulin-like growth factor binding proteins. Endocrine reviews. 2002;23(6):824-54.
34. Cohen P, Rajah R, Rosenbloom J, Herrick DJ. IGFBP-3 mediates TGF-β1-induced cell growth in human airway smooth muscle cells. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2000;278(3):L545-L51.
35. Kansra S, Ewton DZ, Wang J, Friedman E. Igfbp‐3 mediates TGFβ1 proliferative response in colon cancer cells. International journal of cancer. 2000;87(3):373-8.
36. Morimoto LM, Newcomb PA, White E, Bigler J, Potter JD. Insulin-like growth factor polymorphisms and colorectal cancer risk. Cancer Epidemiology Biomarkers & Prevention. 2005;14(5):1204-11.
37. Schernhammer ES, Hankinson SE, Hunter DJ, Blouin MJ, Pollak MN. Polymorphic variation at the‐202 locus in IGFBP3: Influence on serum levels of insulin‐like growth factors, interaction with plasma retinol and vitamin D and breast cancer risk. International journal of cancer. 2003;107(1):60-4.
38. Jernström H, Deal C, Wilkin F, Chu W, Tao Y, Majeed N, et al. Genetic and nongenetic factors associated with variation of plasma levels of insulin-like growth factor-I and insulin-like growth factor-binding protein-3 in healthy premenopausal women. Cancer Epidemiology Biomarkers & Prevention. 2001;10(4):377-84.
39. Ho G, Melman A, Liu S, Li M, Yu H, Negassa A, et al. Polymorphism of the insulin gene is associated with increased prostate cancer risk. British Journal of Cancer. 2003;88(2):263-9.
40. Wagner K, Hemminki K, Grzybowska E, Klaes R, Butkiewicz D, Pamula J, et al. The insulin-like growth factor-1 pathway mediator genes: SHC1 Met300Val shows a protective effect in breast cancer. Carcinogenesis. 2004;25(12):2473-8.
41. Almind K, Inoue G, Pedersen O, Kahn CR. A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling. Evidence from transfection studies. The Journal of clinical investigation. 1996;97(11):2569-75.
42. Slattery ML, Samowitz W, Curtin K, Ma KN, Hoffman M, Caan B, et al. Associations among IRS1, IRS2, IGF1, and IGFBP3 genetic polymorphisms and colorectal cancer. Cancer Epidemiology Biomarkers & Prevention. 2004;13(7):1206-14.
43. Pechlivanis S, Pardini B, Bermejo JL, Wagner K, Naccarati A, Vodickova L, et al. Insulin pathway related genes and risk of colorectal cancer: INSR promoter polymorphism shows a protective effect. Endocrine-related cancer. 2007;14(3):733-40.
44. Wagner K, Hemminki K, Försti A. The GH1/IGF-1 axis polymorphisms and their impact on breast cancer development. Breast cancer research and treatment. 2007;104(3):233-48.
45. Karimi K, Arkani M, Safaei A, Pourhoseingholi MA, Mohebbi SR, Fatemi SR, et al. Association of leptin receptor gene Gln223Arg polymorphism with susceptibility to colorectal cancer. Gastroenterology and hepatology from bed to bench. 2011;4(4):192.
46. Nobakht H, Mahmoudi T, Mirakhorli M, Dabiri R, Zali MR. A Common Promoter Polymorphism (-23HphI) in Insulin Gene and Susceptibility to Colorectal Cancer. International Journal of Cancer Management. 2017;10(6).
47. Cheng I, Caberto CP, Lum-Jones A, Seifried A, Wilkens LR, Schumacher FR, et al. Type 2 diabetes risk variants and colorectal cancer risk: the Multiethnic Cohort and PAGE studies. Gut. 2011;60(12):1703-11.
48. He J, Wilkens LR, Stram DO, Kolonel LN, Henderson BE, Wu AH, et al. Generalizability and epidemiologic characterization of eleven colorectal cancer GWAS hits in multiple populations. Cancer epidemiology, biomarkers & prevention. 2011;20(1):70-81.
49. Zeggini E, Scott LJ, Saxena R, Voight BF, Marchini JL, Hu T, et al. Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes. Nature genetics. 2008;40(5):638-45.
50. Hu C, Zhang R, Wang C, Wang J, Ma X, Lu J, et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a chinese population. PLoS One. 2009;4(10):e7643.
51. Stančáková A, Kuulasmaa T, Paananen J, Jackson AU, Bonnycastle LL, Collins FS, et al. Association of 18 confirmed susceptibility loci for type 2 diabetes with indices of insulin release, proinsulin conversion, and insulin sensitivity in 5,327 nondiabetic Finnish men. Diabetes. 2009;58(9):2129-36.
52. Mahmoudi T, Majidzadeh-a K, Karimi K, Karimi N, Farahani H, Dabiri R, et al. An exon variant in insulin receptor gene is associated with susceptibility to colorectal cancer in women. Tumor Biology. 2015;36(5):3709-15.
53. Landi D, Gemignani F, Naccarati A, Pardini B, Vodicka P, Vodickova L, et al. Polymorphisms within micro-RNA-binding sites and risk of sporadic colorectal cancer. Carcinogenesis. 2008;29(3):579-84.
54. Landi D, Moreno V, Guino E, Vodicka P, Pardini B, Naccarati A, et al. Polymorphisms affecting micro-RNA regulation and associated with the risk of dietary-related cancers: a review from the literature and new evidence for a functional role of rs17281995 (CD86) and rs1051690 (INSR), previously associated with colorectal cancer. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 2011;717(1-2):109-15.
55. Kovacs P, Hanson RL, Lee Y-H, Yang X, Kobes S, Permana PA, et al. The role of insulin receptor substrate-1 gene (IRS1) in type 2 diabetes in Pima Indians. Diabetes. 2003;52(12):3005-9.
56. Lautier C, Mkadem E, Ait S, Renard E, Brun JF, Gris JC, et al. Complex haplotypes of IRS2 gene are associated with severe obesity and reveal heterogeneity in the effect of Gly1057Asp mutation. Human genetics. 2003;113(1):34-43.
57. Hu Y, Zhou M, Zhang K, Kong X, Hu X, Li K, et al. Lack of association between insulin receptor substrate2 rs1805097 polymorphism and the risk of colorectal and breast cancer: a meta-analysis. PloS one. 2014;9(1):e86911.
58. Yukseloglu EH, Celik SK, Kucuk MU, Yalin E, Ozkal SS, Ates C, et al. IRS-2 G1057D polymorphism in Turkish patients with colorectal cancer. Gastroenterology Review/Przegląd Gastroenterologiczny. 2014;9(2):88-92.
59. Giovannucci E. Insulin, insulin-like growth factors and colon cancer: a review of the evidence. The Journal of nutrition. 2001;131(11):3109S-20S.
60. Probst-Hensch N, Yuan J, Stanczyk F, Gao Y, Ross R, Yu M. IGF-1, IGF-2 and IGFBP-3 in prediagnostic serum: association with colorectal cancer in a cohort of Chinese men in Shanghai. British journal of cancer. 2001;85(11):1695-9.
61. Al-Zahrani A, Sandhu MS, Luben RN, Thompson D, Baynes C, Pooley KA, et al. IGF1 and IGFBP3 tagging polymorphisms are associated with circulating levels of IGF1, IGFBP3 and risk of breast cancer. Human molecular genetics. 2006;15(1):1-10.
62. Pechlivanis S, Wagner K, Chang-Claude J, Hoffmeister M, Brenner H, Försti A. Polymorphisms in the insulin like growth factor 1 and IGF binding protein 3 genes and risk of colorectal cancer. Cancer detection and prevention. 2007;31(5):408-16.
63. Quan H, Tang H, Fang L, Bi J, Liu Y, Li H. IGF1 (CA) 19 and IGFBP-3-202A/C gene polymorphism and cancer risk: a meta-analysis. Cell biochemistry and biophysics. 2014;69(1):169-78.
Files
IssueVol 13 No 4 (2021) QRcode
SectionReviews
DOI https://doi.org/10.18502/bccr.v13i4.14403
Keywords
Cancer CRC Genotype Insulin Variant

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Abedi Sarvestani F, Karimi shayan T, Abdolmaleki A, Asadi A. Polymorphisms in insulin pathway genes and cancer risk. Basic Clin Cancer Res. 2022;13(4):292-304.