Comprehensive Study of Lung Cancer Proton Therapy with Injection of GNPs
Abstract
The application of radiation therapy (RT) in lung cancer has shown some exciting and sometimes disappointing advances in recent years. Protons compared with photons interact differently with human tissues, and can be used to improve patient care for suffering from lung cancer. A new strategy is the simultaneous injection of nanoparticles with proton radiation into the tumor which has been given over a decade to improveconventional RT. In this work, proton beam therapy (PBT) with gold nanoparticles (GNPs) is used as a part of a combination program to treat advanced localized lung cancers. This paper aims to develop the complex Geant4 model on the human lung and predict the distribution of absorbed dose in lung tumors during proton therapy without and with a high-Z injection of GNPs. Thus, the absorbed dose distribution in lung tumorsfor four modes such as (i) Bethe-Bloch’s relativistic quantum theory, (ii) GEANT4/ GATE7 simulation model, (iii) Hartree-Fock-Roothaan(HFR) wave functions, and the(vi) Bortfeld theoretical model without and with the injection of GNPs in predicted lung phantom are compared.
1.Palma D.A. Senan S., Oberije C., Belderbos J., de Dios N.R., Bradley J.D., Barriger R.B., Moreno-Jimenez M., Kim T.H., Ramella S., et al. Predicting esophagitis after chemoRT for non-small cell lung cancer: An individual patient data meta-analysis. Int. J. Radiat. Oncol. Biol. Phys, 87,690–696, 2013.
2.Wolf J, Patno ME, Roswit B, D’Esopo N. Controlled study of survival of patients with clinically inoperable lung cancer treated with RT. Am J Med, 40, 360-367, 1966.
3.Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol, 60,8, 977-85,2008.
4.Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Futur Oncol.,81,8,1167-1172,2012.
5.Sancey L, Lux F, Kotb S, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 87,20140134, 2014.
6.Kim J-K, Seo S-J, Kim K-RK-H, et al. Therapeutic application of metallic nanoparticles combined with particle-induced X-ray emission effect. Nanotechnology, 21,425102, 2010.
7.Polf JC, Bronk LF, Driessen WHP, et al. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett. 98:193702, 2011.
8.Schlathölter T, Lacombe S, Eustache P, et al. Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int J Nanomed, 11,1549, 2016.
9.Butterworth K T, Wyer J A, Brennan-Fournet M, Latimer C J, Shah M B, Currell F J and Hirst D G. Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat. Res. 170 381–7, 2008.
10.Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21:85103, 2010.
11.Jain S, Coulter JA, Butterworth KT, et al. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiother Oncol, 110:342–7, 2014.
12. Lewis H. W., Phys. Rev. 78 526, 1950.
13. ICRU Stopping powers and ranges for protons and α-particles ICRU Report 49 (Bethesda, MD), 1993.
14. Reynaert N, Vandermarck S, Schaart D, Vanderzee W, Vanvlietvroegindeweij C, Tomsej M, Jansen J, Heijmen B, Coghe M, and Dewagter C.Monte carlo treatment planning for photon and electron beams. Radiat. Phys. Chem. 76, 643–686 ,2007.
15. Murphy M. J, Balter J. M, Balter S, BenComo J. A, Das I. J, Jiang S. B, Ma C. M, Olivera G. H, Rodebaugh R. F, Ruchala K. J, Shirato H, and Yin F. F.The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75. Med. Phys. 34, 4041– 4063, 2007.
16. Ljungberg M and Strand S. E.A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed 29, 257–272 ,1989.
17. Harrison R and Vannoy S.Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography. in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, 1154–1158, 1993.
18. Cañadas M, Arce P, and Rato Mendes P.Validation of a small-animal pet simulation using gamos: A GEANT4-based framework. Phys. Med. Biol. 56, 273–288, 2011.
19.LANL, MCNPX 2.6.0 Users’s Guide, Technical Report No. LA-CP-07 1473, 2008.
20. Battistoni G, Muraro S, Sala P, Cerutti F, Ferrari A, Roesler S, Fasso A, and Ranft J.The FLUKA code: Description and benchmarking. in Hadronic Shower Simulations Workshop, edited by M. Albrow and R. Raja (AIP Conference, Fermilab, Batavia, IL), Vol. 896, 31–49, 2006.
21. Ferrari A, Sala P, Fasso A, and Ranft J. FLUKA: A Multi-Particle Transport Code. Technical Report No. INFN/TC 05/11, SLAC-R-773, CERN2005-10, 2005.
22. Perl J, Shin J, Faddegon B, and Paganetti H.TOPAS : An innovative proton Monte Carlo platform for research.Med. Phys. 39, 6818–6837 ,2012.
23. Walters B. R. B, Kawrakow I, and Rogers D. W. O.History by history statistical estimators in the beam code system. Med. Phys. 29, 2745–2752 ,2002.
24. Kawrakow I and Fippel M.Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys. Med. Biol. 45, 2163–2183 ,2000.
25. Jan S, Santin G, Strul D, Staelens S, Assié K, et al.Gate: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 49, 4543–4561 ,2004.
26. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, et al .GATE V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56, 881–901 ,2011.
27.The OpenGate Collaboration, http://www.opengatecollaboration.org, 2014.
28.The OpenGate Collaboration, http://git.opengatecollaboration.org/git/ opengate-public.git, 2014.
29. Paganetti H.Dose to water versus dose to medium in proton beam therapy. Phys. Med. Biol. 54, 4399–4421 ,2009.
30. Grevillot L, Bertrand D, Dessy F, Freud N, and Sarrut D.Gate as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans. Phys. Med. Biol. 57, 4223–4244 ,2012.
31. Tedgren Å. C and Carlsson G. A.Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy. Phys. Med. Biol. 58, 2561–2579 ,2013.
32. Jiang H, Seco J, and Paganetti H.Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations. Med. Phys. 34, 1439–1449 ,2007.
33. Jiang H and Paganetti H.Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med. Phys. 31, 2811–2818 ,2004.
34. Sarrut D and Guigues L.Region-oriented CT image representation for reducing computing time of Monte Carlo simulations. Med. Phys. 35, 1452–1463 ,2008.
35-Wayne D Newhauser and Rui Zhang. The physics of proton therapy. Phys. Med. Biol. 60 R155–R209, 2015.
36.Jens Lindhard and Allan H. Sorensen, PHYSICAL REVIEW A, 53, 4, 2443-2456, 1995.
37. Metin Usta I. Mustafa Çağatay T. Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions. Radiation Physics and Chemistry · March 2017.
38.Highland VL. Some practical remarks on multiple scattering. Nucl Instrum Methods, 129,497–9. 1975.
39- Ulmer W and Schaner B. Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system. Radiation Physics and Chemistry, vol. 80, 2011.
40. Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys. 24,12,2024-33, 1997.
2.Wolf J, Patno ME, Roswit B, D’Esopo N. Controlled study of survival of patients with clinically inoperable lung cancer treated with RT. Am J Med, 40, 360-367, 1966.
3.Hainfeld JF, Dilmanian FA, Slatkin DN, Smilowitz HM. Radiotherapy enhancement with gold nanoparticles. J Pharm Pharmacol, 60,8, 977-85,2008.
4.Maggiorella L, Barouch G, Devaux C, et al. Nanoscale radiotherapy with hafnium oxide nanoparticles. Futur Oncol.,81,8,1167-1172,2012.
5.Sancey L, Lux F, Kotb S, et al. The use of theranostic gadolinium-based nanoprobes to improve radiotherapy efficacy. Br J Radiol. 87,20140134, 2014.
6.Kim J-K, Seo S-J, Kim K-RK-H, et al. Therapeutic application of metallic nanoparticles combined with particle-induced X-ray emission effect. Nanotechnology, 21,425102, 2010.
7.Polf JC, Bronk LF, Driessen WHP, et al. Enhanced relative biological effectiveness of proton radiotherapy in tumor cells with internalized gold nanoparticles. Appl Phys Lett. 98:193702, 2011.
8.Schlathölter T, Lacombe S, Eustache P, et al. Improving proton therapy by metal-containing nanoparticles: nanoscale insights. Int J Nanomed, 11,1549, 2016.
9.Butterworth K T, Wyer J A, Brennan-Fournet M, Latimer C J, Shah M B, Currell F J and Hirst D G. Variation of strand break yield for plasmid DNA irradiated with high-Z metal nanoparticles. Radiat. Res. 170 381–7, 2008.
10.Porcel E, Liehn S, Remita H, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology, 21:85103, 2010.
11.Jain S, Coulter JA, Butterworth KT, et al. Gold nanoparticle cellular uptake, toxicity and radiosensitisation in hypoxic conditions. Radiother Oncol, 110:342–7, 2014.
12. Lewis H. W., Phys. Rev. 78 526, 1950.
13. ICRU Stopping powers and ranges for protons and α-particles ICRU Report 49 (Bethesda, MD), 1993.
14. Reynaert N, Vandermarck S, Schaart D, Vanderzee W, Vanvlietvroegindeweij C, Tomsej M, Jansen J, Heijmen B, Coghe M, and Dewagter C.Monte carlo treatment planning for photon and electron beams. Radiat. Phys. Chem. 76, 643–686 ,2007.
15. Murphy M. J, Balter J. M, Balter S, BenComo J. A, Das I. J, Jiang S. B, Ma C. M, Olivera G. H, Rodebaugh R. F, Ruchala K. J, Shirato H, and Yin F. F.The management of imaging dose during image-guided radiotherapy: Report of the AAPM Task Group 75. Med. Phys. 34, 4041– 4063, 2007.
16. Ljungberg M and Strand S. E.A Monte Carlo program for the simulation of scintillation camera characteristics. Comput Methods Programs Biomed 29, 257–272 ,1989.
17. Harrison R and Vannoy S.Preliminary experience with the photon history generator module of a public-domain simulation system for emission tomography. in Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, 1154–1158, 1993.
18. Cañadas M, Arce P, and Rato Mendes P.Validation of a small-animal pet simulation using gamos: A GEANT4-based framework. Phys. Med. Biol. 56, 273–288, 2011.
19.LANL, MCNPX 2.6.0 Users’s Guide, Technical Report No. LA-CP-07 1473, 2008.
20. Battistoni G, Muraro S, Sala P, Cerutti F, Ferrari A, Roesler S, Fasso A, and Ranft J.The FLUKA code: Description and benchmarking. in Hadronic Shower Simulations Workshop, edited by M. Albrow and R. Raja (AIP Conference, Fermilab, Batavia, IL), Vol. 896, 31–49, 2006.
21. Ferrari A, Sala P, Fasso A, and Ranft J. FLUKA: A Multi-Particle Transport Code. Technical Report No. INFN/TC 05/11, SLAC-R-773, CERN2005-10, 2005.
22. Perl J, Shin J, Faddegon B, and Paganetti H.TOPAS : An innovative proton Monte Carlo platform for research.Med. Phys. 39, 6818–6837 ,2012.
23. Walters B. R. B, Kawrakow I, and Rogers D. W. O.History by history statistical estimators in the beam code system. Med. Phys. 29, 2745–2752 ,2002.
24. Kawrakow I and Fippel M.Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC. Phys. Med. Biol. 45, 2163–2183 ,2000.
25. Jan S, Santin G, Strul D, Staelens S, Assié K, et al.Gate: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 49, 4543–4561 ,2004.
26. Jan S, Benoit D, Becheva E, Carlier T, Cassol F, et al .GATE V6: A major enhancement of the gate simulation platform enabling modelling of CT and radiotherapy. Phys. Med. Biol. 56, 881–901 ,2011.
27.The OpenGate Collaboration, http://www.opengatecollaboration.org, 2014.
28.The OpenGate Collaboration, http://git.opengatecollaboration.org/git/ opengate-public.git, 2014.
29. Paganetti H.Dose to water versus dose to medium in proton beam therapy. Phys. Med. Biol. 54, 4399–4421 ,2009.
30. Grevillot L, Bertrand D, Dessy F, Freud N, and Sarrut D.Gate as a GEANT4-based Monte Carlo platform for the evaluation of proton pencil beam scanning treatment plans. Phys. Med. Biol. 57, 4223–4244 ,2012.
31. Tedgren Å. C and Carlsson G. A.Specification of absorbed dose to water using model-based dose calculation algorithms for treatment planning in brachytherapy. Phys. Med. Biol. 58, 2561–2579 ,2013.
32. Jiang H, Seco J, and Paganetti H.Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations. Med. Phys. 34, 1439–1449 ,2007.
33. Jiang H and Paganetti H.Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data. Med. Phys. 31, 2811–2818 ,2004.
34. Sarrut D and Guigues L.Region-oriented CT image representation for reducing computing time of Monte Carlo simulations. Med. Phys. 35, 1452–1463 ,2008.
35-Wayne D Newhauser and Rui Zhang. The physics of proton therapy. Phys. Med. Biol. 60 R155–R209, 2015.
36.Jens Lindhard and Allan H. Sorensen, PHYSICAL REVIEW A, 53, 4, 2443-2456, 1995.
37. Metin Usta I. Mustafa Çağatay T. Stopping power and range calculations in human tissues by using the Hartree-Fock-Roothaan wave functions. Radiation Physics and Chemistry · March 2017.
38.Highland VL. Some practical remarks on multiple scattering. Nucl Instrum Methods, 129,497–9. 1975.
39- Ulmer W and Schaner B. Foundation of an analytical proton beamlet model for inclusion in a general proton dose calculation system. Radiation Physics and Chemistry, vol. 80, 2011.
40. Bortfeld T. An analytical approximation of the Bragg curve for therapeutic proton beams. Med Phys. 24,12,2024-33, 1997.
Files | ||
Issue | Vol 13 No 4 (2021) | |
Section | Original Articles | |
DOI | https://doi.org/10.18502/bccr.v13i4.14404 | |
Keywords | ||
Lung Nanoparticles proton relativistic simulation |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Khoramdel R, Hosseinimotlagh S, Parang Z. Comprehensive Study of Lung Cancer Proton Therapy with Injection of GNPs. Basic Clin Cancer Res. 2023;13(4):305-319.