New-targeted therapy for leukemia based on Endoplasmic Reticulum Stress
Abstract
The unfolded protein response (UPR) is an evolutionarily conserved adaptive pathway activated by the stress of the endoplasmic reticulum (ER). ER stress often occurs due to the high protein synthesis in cells and errors made in folding in several diseases such as different cancers and autoimmune diseases. UPR is mediated by three primary arms called inositol-requiring enzyme-1α (IRE1α), protein kinase RNA-like endoplasmic reticulum kinase (PERK), and activating transcription factor 6α (ATF6α). Given that homeostasis in protein synthesis is frequently deregulated in cancers, UPR has a critical role in controlling survival and cell death. Indeed, cancer cells’ resistance to apoptosis is mediated by the pro-survival mechanism of ER stress. Due to the deregulation of UPR signaling in hematopoietic stem cells and leukemia, protein translation will not be set well, and in this time, targeting UPR-driven pro-survival pathways could represent a novel therapeutic strategy in leukemia. This study aims to provide an updated role of UPR as a novel target in leukemia.
1. Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127:2391–405.
2. Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood. 2017;130:410–23.
3. Lightfoot T, Smith A, Roman E. Leukemia. Int Encycl Public Heal. Elsevier; 2017. p. 410–8.
4. Arber DA. Acute Myeloid Leukemia. Hematopathology. Elsevier; 2018. p. 429-466.e5.
5. Al-Sawaf O, Eichhorst B, Hallek M. Chronische lymphatische Leukämie. Der Onkol. 2020;26:465–76.
6. Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician [Internet]. 2008;77:311–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18297955
7. Lara-Reyna S, Scambler T, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Regulation of the Unfolded Protein Response in Disease: Cellular Stress and microRNAs. Curr Immunol Rev. 2018;
8. Wang M, Law ME, Castellano RK, Law BK. The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol. 2018;127:66–79.
9. Lin JH, Walter P, Yen TSB. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.
10. Ng DTW, Walter P. ER membrane protein complex required for nuclear fusion. J Cell Biol. 1996;132:499–509.
11. Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis [Internet]. 2017;6:e373–e373. Available from: http://www.nature.com/articles/oncsis201772
12. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.
13. Hetz C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012.
14. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress‐induced apoptosis. EMBO Rep. 2006;7:880–5.
15. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Invest. 2005.
16. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;
17. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants Redox Signal. 2014.
18. Mazure NM, Pouysségur J. Hypoxia-induced autophagy: Cell death or cell survival? Curr. Opin. Cell Biol. 2010.
19. Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 2016.
20. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;
21. Gardner BM, Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science (80- ). 2011;
22. Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: Integrating stress signals through the stress sensor IRE1 α. Physiol Rev. 2011;
23. Ahmadiany M, Alavi-Samani M, Hashemi Z, Moosavi MA, Rahmati M. The increased rnase activity of ire1α in PBMCs from patients with rheumatoid arthritis. Adv Pharm Bull [Internet]. 2019;9:505–9. Available from: https://doi.org/10.15171/apb.2019.060
24. Coelho DS, Domingos PM. Physiological roles of regulated Ire1 dependent decay. Front Genet. 2014;
25. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta - Mol. Cell Res. 2013.
26. Lumley EC, Osborn AR, Scott JE, Scholl AG, Mercado V, McMahan YT, et al. Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones. 2017;
27. Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ. Res. 2010.
28. Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A. 2000;
29. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;
30. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988;
31. Nagelkerke A, Bussink J, Sweep FCGJ, Span PN. The unfolded protein response as a target for cancer therapy. Biochim. Biophys. Acta - Rev. Cancer. 2014.
32. Rahmati M, Moosavi MA, McDermott MF. ER Stress: A Therapeutic Target in Rheumatoid Arthritis? Trends Pharmacol. Sci. 2018.
33. Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, et al. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy. 2017.
34. Wang Y, Wang K, Jin Y, Sheng X. Endoplasmic reticulum proteostasis control and gastric cancer. Cancer Lett. 2019;449:263–71.
35. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 2016.
36. Rahmati M, Amanpour S, Kharman-Biz A, Moosavi MA. Endoplasmic reticulum stress as a therapeutic target in cancer: a mini review. Basic Clin Cancer Res. 2017;9:38–48.
37. Fu X, Cui J, Meng X, Jiang P, Zheng Q, Zhao W, et al. Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol. Rep. 2021.
38. Lin Y, Jiang M, Chen W, Zhao T, Wei Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother. 2019.
39. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: A human perspective. Cell Stem Cell. 2012.
40. Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends in Cancer. 2020.
41. Van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;
42. Xu L, Liu X, Peng F, Zhang W, Zheng L, Ding Y, et al. Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nat Cell Biol. 2020;
43. Sigurdsson V, Miharada K. Regulation of unfolded protein response in hematopoietic stem cells. Int. J. Hematol. 2018.
44. Friedman AD, Keefer JR, Kummalue T, Liu H, Wang QF, Cleaves R. Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein α. Blood Cells, Mol Dis. 2003;
45. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am. Soc. Hematol. Educ. Program. 2013.
46. De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: A review. Expert Rev. Hematol. 2014.
47. Collins SJ. Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol. 2008;15:346–51.
48. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, et al. Acute promyelocytic leukemia: From genetics to treatment. Blood. 1994.
49. Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, et al. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci. 2014;1310:7–31.
50. Tanimura A, Yujiri T, Tanaka Y, Tanaka M, Mitani N, Nakamura Y, et al. Activation of the unfolded protein response in primary acute myeloid leukemia cells. Int. J. Hematol. 2011.
51. Schardt JA, Mueller BU, Pabst T. Activation of the Unfolded Protein Response in Human Acute Myeloid Leukemia. Methods Enzymol. 2011. p. 227–43.
52. Schardt JA, Weber D, Eyholzer M, Mueller BU, Pabst T. Activation of the Unfolded Protein Response Is Associated with Favorable Prognosis in Acute Myeloid Leukemia. Clin Cancer Res. 2009;15:3834–41.
53. Benedetti L, Levin AA, Scicchitano BM, Grignani F, Allenby G, Diverio D, et al. Characterization of the Retinoid Binding Properties of the Major Fusion Products Present in Acute Promyelocytic Leukemia Cells. Blood. 1997;
54. Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med. 2009;14:1509–19.
55. Ilaria RL. Pathobiology of lymphoid and myeloid blast crisis and management issues. Hematology Am Soc Hematol Educ Program. 2005;
56. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov A V., et al. MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell. 2011;
57. Bernt KM, Hunger SP. Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Front Oncol. 2014;4.
58. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 2011;226:2762–81.
59. Klein F, Feldhahn N, Harder L, Wang H, Wartenberg M, Hofmann WK, et al. The BCR-ABL1 Kinase Bypasses Selection for the Expression of a Pre-B Cell Receptor in Pre-B Acute Lymphoblastic Leukemia Cells. J Exp Med. 2004;
60. Iwakoshi NN, Lee A-H, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.
61. Kharabi Masouleh B, Geng H, Hurtz C, Chan LN, Logan AC, Chang MS, et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Natl Acad Sci. 2014;111:E2219–28.
62. Kharabi Masouleh B, Chevet E, Panse J, Jost E, O’Dwyer M, Bruemmendorf TH, et al. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol. 2015;8:87.
63. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165–76.
64. Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The unfolded protein response: A novel therapeutic target in acute leukemias. Cancers (Basel). 2020.
65. Rosati E, Sabatini R, Rampino G, De Falco F, Di Ianni M, Falzetti F, et al. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood. 2010;
66. Salesse S, Verfaillie CM. BCR/ABL: From molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 2002;
67. Bazi A, Keramati MR, Gholamin M. Role of oxidative stress in modulating unfolded protein response activity in chronic myeloid leukemia cell line. Iran Biomed J. 2016;
68. Kusio-Kobialka M, Podszywalow-Bartnicka P, Peidis P, Glodkowska-Mrowka E, Wolanin K, Leszak G, et al. The PERK-eIF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle. 2012;
69. Féral K, Jaud M, Philippe C, Bella D Di, Pyronnet S, Rouault-Pierre K, et al. ER stress and unfolded protein response in leukemia: Friend, foe, or both? Biomolecules. 2021.
70. Higa A, Taouji S, Lhomond S, Jensen D, Fernandez-Zapico ME, Simpson JC, et al. Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6α Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance. Mol Cell Biol. 2014;
71. Tang CHA, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest. 2014;
72. Sun H, Lin D-C, Guo X, Masouleh BK, Gery S, Cao Q, et al. Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget [Internet]. 2016;7:18736–49. Available from: https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.7702
73. Tanimura A, Yujiri T, Tanaka Y, Hatanaka M, Mitani N, Nakamura Y, et al. The anti-apoptotic role of the unfolded protein response in Bcr-Abl-positive leukemia cells. Leuk Res. 2009;
74. Leclerc GM, Zheng S, Leclerc GJ, DeSalvo J, Swords RT, Barredo JC. The NEDD8-activating enzyme inhibitor pevonedistat activates the eIF2α and mTOR pathways inducing UPR-mediated cell death in acute lymphoblastic leukemia. Leuk Res. 2016;
75. Huiting L, Samaha Y, Zhang G, Roderick J, Li B, Anderson N, et al. UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia. 2018;
76. Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H, et al. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol [Internet]. 2011;153:741–52. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2011.08671.x
77. Mahameed M, Wilhelm T, Darawshi O, Obiedat A, Tommy WS, Chintha C, et al. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis. 2019;
78. Wang Q, Shinkre BA, Lee J gu, Weniger MA, Liu Y, Chen W, et al. The ERAD inhibitor eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS One. 2010;
79. Staquicini DI, D’Angelo S, Ferrara F, Karjalainen K, Sharma G, Smith TL, et al. Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma: preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates. Pharmacogenomics J [Internet]. 2018;18:436–43. Available from: http://www.nature.com/articles/tpj201746
80. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011;
81. Masciarelli S, Capuano E, Ottone T, Divona M, De Panfilis S, Banella C, et al. Retinoic acid and arsenic trioxide sensitize acute promyelocytic leukemia cells to ER stress. Leukemia [Internet]. 2018;32:285–94. Available from: http://www.nature.com/articles/leu2017231
2. Taylor J, Xiao W, Abdel-Wahab O. Diagnosis and classification of hematologic malignancies on the basis of genetics. Blood. 2017;130:410–23.
3. Lightfoot T, Smith A, Roman E. Leukemia. Int Encycl Public Heal. Elsevier; 2017. p. 410–8.
4. Arber DA. Acute Myeloid Leukemia. Hematopathology. Elsevier; 2018. p. 429-466.e5.
5. Al-Sawaf O, Eichhorst B, Hallek M. Chronische lymphatische Leukämie. Der Onkol. 2020;26:465–76.
6. Gerber DE. Targeted therapies: a new generation of cancer treatments. Am Fam Physician [Internet]. 2008;77:311–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/18297955
7. Lara-Reyna S, Scambler T, Holbrook J, Jarosz-Griffiths HH, Peckham D, McDermott MF. Regulation of the Unfolded Protein Response in Disease: Cellular Stress and microRNAs. Curr Immunol Rev. 2018;
8. Wang M, Law ME, Castellano RK, Law BK. The unfolded protein response as a target for anticancer therapeutics. Crit Rev Oncol Hematol. 2018;127:66–79.
9. Lin JH, Walter P, Yen TSB. Endoplasmic reticulum stress in disease pathogenesis. Annu Rev Pathol. 2008;3:399–425.
10. Ng DTW, Walter P. ER membrane protein complex required for nuclear fusion. J Cell Biol. 1996;132:499–509.
11. Avril T, Vauléon E, Chevet E. Endoplasmic reticulum stress signaling and chemotherapy resistance in solid cancers. Oncogenesis [Internet]. 2017;6:e373–e373. Available from: http://www.nature.com/articles/oncsis201772
12. Walter P, Ron D. The unfolded protein response: from stress pathway to homeostatic regulation. Science. 2011;334:1081–6.
13. Hetz C. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat. Rev. Mol. Cell Biol. 2012.
14. Szegezdi E, Logue SE, Gorman AM, Samali A. Mediators of endoplasmic reticulum stress‐induced apoptosis. EMBO Rep. 2006;7:880–5.
15. Xu C, Bailly-Maitre B, Reed JC. Endoplasmic reticulum stress: Cell life and death decisions. J. Clin. Invest. 2005.
16. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;
17. Cao SS, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress in cell fate decision and human disease. Antioxidants Redox Signal. 2014.
18. Mazure NM, Pouysségur J. Hypoxia-induced autophagy: Cell death or cell survival? Curr. Opin. Cell Biol. 2010.
19. Han J, Kaufman RJ. The role of ER stress in lipid metabolism and lipotoxicity. J. Lipid Res. 2016.
20. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell. 2000;
21. Gardner BM, Walter P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science (80- ). 2011;
22. Hetz C, Martinon F, Rodriguez D, Glimcher LH. The unfolded protein response: Integrating stress signals through the stress sensor IRE1 α. Physiol Rev. 2011;
23. Ahmadiany M, Alavi-Samani M, Hashemi Z, Moosavi MA, Rahmati M. The increased rnase activity of ire1α in PBMCs from patients with rheumatoid arthritis. Adv Pharm Bull [Internet]. 2019;9:505–9. Available from: https://doi.org/10.15171/apb.2019.060
24. Coelho DS, Domingos PM. Physiological roles of regulated Ire1 dependent decay. Front Genet. 2014;
25. Sano R, Reed JC. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta - Mol. Cell Res. 2013.
26. Lumley EC, Osborn AR, Scott JE, Scholl AG, Mercado V, McMahan YT, et al. Moderate endoplasmic reticulum stress activates a PERK and p38-dependent apoptosis. Cell Stress Chaperones. 2017;
27. Groenendyk J, Sreenivasaiah PK, Kim DH, Agellon LB, Michalak M. Biology of endoplasmic reticulum stress in the heart. Circ. Res. 2010.
28. Brewer JW, Diehl JA. PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A. 2000;
29. Haze K, Yoshida H, Yanagi H, Yura T, Mori K. Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 1999;
30. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988;
31. Nagelkerke A, Bussink J, Sweep FCGJ, Span PN. The unfolded protein response as a target for cancer therapy. Biochim. Biophys. Acta - Rev. Cancer. 2014.
32. Rahmati M, Moosavi MA, McDermott MF. ER Stress: A Therapeutic Target in Rheumatoid Arthritis? Trends Pharmacol. Sci. 2018.
33. Mokarram P, Albokashy M, Zarghooni M, Moosavi MA, Sepehri Z, Chen QM, et al. New frontiers in the treatment of colorectal cancer: Autophagy and the unfolded protein response as promising targets. Autophagy. 2017.
34. Wang Y, Wang K, Jin Y, Sheng X. Endoplasmic reticulum proteostasis control and gastric cancer. Cancer Lett. 2019;449:263–71.
35. Grootjans J, Kaser A, Kaufman RJ, Blumberg RS. The unfolded protein response in immunity and inflammation. Nat. Rev. Immunol. 2016.
36. Rahmati M, Amanpour S, Kharman-Biz A, Moosavi MA. Endoplasmic reticulum stress as a therapeutic target in cancer: a mini review. Basic Clin Cancer Res. 2017;9:38–48.
37. Fu X, Cui J, Meng X, Jiang P, Zheng Q, Zhao W, et al. Endoplasmic reticulum stress, cell death and tumor: Association between endoplasmic reticulum stress and the apoptosis pathway in tumors (Review). Oncol. Rep. 2021.
38. Lin Y, Jiang M, Chen W, Zhao T, Wei Y. Cancer and ER stress: Mutual crosstalk between autophagy, oxidative stress and inflammatory response. Biomed. Pharmacother. 2019.
39. Doulatov S, Notta F, Laurenti E, Dick JE. Hematopoiesis: A human perspective. Cell Stem Cell. 2012.
40. Khateb A, Ronai ZA. Unfolded Protein Response in Leukemia: From Basic Understanding to Therapeutic Opportunities. Trends in Cancer. 2020.
41. Van Galen P, Kreso A, Mbong N, Kent DG, Fitzmaurice T, Chambers JE, et al. The unfolded protein response governs integrity of the haematopoietic stem-cell pool during stress. Nature. 2014;
42. Xu L, Liu X, Peng F, Zhang W, Zheng L, Ding Y, et al. Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nat Cell Biol. 2020;
43. Sigurdsson V, Miharada K. Regulation of unfolded protein response in hematopoietic stem cells. Int. J. Hematol. 2018.
44. Friedman AD, Keefer JR, Kummalue T, Liu H, Wang QF, Cleaves R. Regulation of granulocyte and monocyte differentiation by CCAAT/enhancer binding protein α. Blood Cells, Mol Dis. 2003;
45. Levis M. FLT3 mutations in acute myeloid leukemia: what is the best approach in 2013? Hematology Am. Soc. Hematol. Educ. Program. 2013.
46. De Braekeleer E, Douet-Guilbert N, De Braekeleer M. RARA fusion genes in acute promyelocytic leukemia: A review. Expert Rev. Hematol. 2014.
47. Collins SJ. Retinoic acid receptors, hematopoiesis and leukemogenesis. Curr Opin Hematol. 2008;15:346–51.
48. Grignani F, Fagioli M, Alcalay M, Longo L, Pandolfi PP, Donti E, et al. Acute promyelocytic leukemia: From genetics to treatment. Blood. 1994.
49. Greim H, Kaden DA, Larson RA, Palermo CM, Rice JM, Ross D, et al. The bone marrow niche, stem cells, and leukemia: impact of drugs, chemicals, and the environment. Ann N Y Acad Sci. 2014;1310:7–31.
50. Tanimura A, Yujiri T, Tanaka Y, Tanaka M, Mitani N, Nakamura Y, et al. Activation of the unfolded protein response in primary acute myeloid leukemia cells. Int. J. Hematol. 2011.
51. Schardt JA, Mueller BU, Pabst T. Activation of the Unfolded Protein Response in Human Acute Myeloid Leukemia. Methods Enzymol. 2011. p. 227–43.
52. Schardt JA, Weber D, Eyholzer M, Mueller BU, Pabst T. Activation of the Unfolded Protein Response Is Associated with Favorable Prognosis in Acute Myeloid Leukemia. Clin Cancer Res. 2009;15:3834–41.
53. Benedetti L, Levin AA, Scicchitano BM, Grignani F, Allenby G, Diverio D, et al. Characterization of the Retinoid Binding Properties of the Major Fusion Products Present in Acute Promyelocytic Leukemia Cells. Blood. 1997;
54. Schardt JA, Eyholzer M, Timchenko NA, Mueller BU, Pabst T. Unfolded protein response suppresses CEBPA by induction of calreticulin in acute myeloid leukaemia. J Cell Mol Med. 2009;14:1509–19.
55. Ilaria RL. Pathobiology of lymphoid and myeloid blast crisis and management issues. Hematology Am Soc Hematol Educ Program. 2005;
56. Bernt KM, Zhu N, Sinha AU, Vempati S, Faber J, Krivtsov A V., et al. MLL-Rearranged Leukemia Is Dependent on Aberrant H3K79 Methylation by DOT1L. Cancer Cell. 2011;
57. Bernt KM, Hunger SP. Current Concepts in Pediatric Philadelphia Chromosome-Positive Acute Lymphoblastic Leukemia. Front Oncol. 2014;4.
58. McCubrey JA, Steelman LS, Kempf CR, Chappell WH, Abrams SL, Stivala F, et al. Therapeutic resistance resulting from mutations in Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR signaling pathways. J Cell Physiol. 2011;226:2762–81.
59. Klein F, Feldhahn N, Harder L, Wang H, Wartenberg M, Hofmann WK, et al. The BCR-ABL1 Kinase Bypasses Selection for the Expression of a Pre-B Cell Receptor in Pre-B Acute Lymphoblastic Leukemia Cells. J Exp Med. 2004;
60. Iwakoshi NN, Lee A-H, Vallabhajosyula P, Otipoby KL, Rajewsky K, Glimcher LH. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat Immunol. 2003;4:321–9.
61. Kharabi Masouleh B, Geng H, Hurtz C, Chan LN, Logan AC, Chang MS, et al. Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Natl Acad Sci. 2014;111:E2219–28.
62. Kharabi Masouleh B, Chevet E, Panse J, Jost E, O’Dwyer M, Bruemmendorf TH, et al. Drugging the unfolded protein response in acute leukemias. J Hematol Oncol. 2015;8:87.
63. Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, et al. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 2001;7:1165–76.
64. Martelli AM, Paganelli F, Chiarini F, Evangelisti C, McCubrey JA. The unfolded protein response: A novel therapeutic target in acute leukemias. Cancers (Basel). 2020.
65. Rosati E, Sabatini R, Rampino G, De Falco F, Di Ianni M, Falzetti F, et al. Novel targets for endoplasmic reticulum stress-induced apoptosis in B-CLL. Blood. 2010;
66. Salesse S, Verfaillie CM. BCR/ABL: From molecular mechanisms of leukemia induction to treatment of chronic myelogenous leukemia. Oncogene. 2002;
67. Bazi A, Keramati MR, Gholamin M. Role of oxidative stress in modulating unfolded protein response activity in chronic myeloid leukemia cell line. Iran Biomed J. 2016;
68. Kusio-Kobialka M, Podszywalow-Bartnicka P, Peidis P, Glodkowska-Mrowka E, Wolanin K, Leszak G, et al. The PERK-eIF2α phosphorylation arm is a pro-survival pathway of BCR-ABL signaling and confers resistance to imatinib treatment in chronic myeloid leukemia cells. Cell Cycle. 2012;
69. Féral K, Jaud M, Philippe C, Bella D Di, Pyronnet S, Rouault-Pierre K, et al. ER stress and unfolded protein response in leukemia: Friend, foe, or both? Biomolecules. 2021.
70. Higa A, Taouji S, Lhomond S, Jensen D, Fernandez-Zapico ME, Simpson JC, et al. Endoplasmic Reticulum Stress-Activated Transcription Factor ATF6α Requires the Disulfide Isomerase PDIA5 To Modulate Chemoresistance. Mol Cell Biol. 2014;
71. Tang CHA, Ranatunga S, Kriss CL, Cubitt CL, Tao J, Pinilla-Ibarz JA, et al. Inhibition of ER stress-associated IRE-1/XBP-1 pathway reduces leukemic cell survival. J Clin Invest. 2014;
72. Sun H, Lin D-C, Guo X, Masouleh BK, Gery S, Cao Q, et al. Inhibition of IRE1α-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget [Internet]. 2016;7:18736–49. Available from: https://www.oncotarget.com/lookup/doi/10.18632/oncotarget.7702
73. Tanimura A, Yujiri T, Tanaka Y, Hatanaka M, Mitani N, Nakamura Y, et al. The anti-apoptotic role of the unfolded protein response in Bcr-Abl-positive leukemia cells. Leuk Res. 2009;
74. Leclerc GM, Zheng S, Leclerc GJ, DeSalvo J, Swords RT, Barredo JC. The NEDD8-activating enzyme inhibitor pevonedistat activates the eIF2α and mTOR pathways inducing UPR-mediated cell death in acute lymphoblastic leukemia. Leuk Res. 2016;
75. Huiting L, Samaha Y, Zhang G, Roderick J, Li B, Anderson N, et al. UFD1 contributes to MYC-mediated leukemia aggressiveness through suppression of the proapoptotic unfolded protein response. Leukemia. 2018;
76. Uckun FM, Qazi S, Ozer Z, Garner AL, Pitt J, Ma H, et al. Inducing apoptosis in chemotherapy-resistant B-lineage acute lymphoblastic leukaemia cells by targeting HSPA5, a master regulator of the anti-apoptotic unfolded protein response signalling network. Br J Haematol [Internet]. 2011;153:741–52. Available from: http://doi.wiley.com/10.1111/j.1365-2141.2011.08671.x
77. Mahameed M, Wilhelm T, Darawshi O, Obiedat A, Tommy WS, Chintha C, et al. The unfolded protein response modulators GSK2606414 and KIRA6 are potent KIT inhibitors. Cell Death Dis. 2019;
78. Wang Q, Shinkre BA, Lee J gu, Weniger MA, Liu Y, Chen W, et al. The ERAD inhibitor eeyarestatin I is a bifunctional compound with a membrane-binding domain and a p97/VCP inhibitory group. PLoS One. 2010;
79. Staquicini DI, D’Angelo S, Ferrara F, Karjalainen K, Sharma G, Smith TL, et al. Therapeutic targeting of membrane-associated GRP78 in leukemia and lymphoma: preclinical efficacy in vitro and formal toxicity study of BMTP-78 in rodents and primates. Pharmacogenomics J [Internet]. 2018;18:436–43. Available from: http://www.nature.com/articles/tpj201746
80. Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, et al. Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood. 2011;
81. Masciarelli S, Capuano E, Ottone T, Divona M, De Panfilis S, Banella C, et al. Retinoic acid and arsenic trioxide sensitize acute promyelocytic leukemia cells to ER stress. Leukemia [Internet]. 2018;32:285–94. Available from: http://www.nature.com/articles/leu2017231
Files | ||
Issue | Vol 13 No 2 (2021) | |
Section | Reviews | |
DOI | https://doi.org/10.18502/bccr.v13i2.10030 | |
Keywords | ||
Endoplasmic reticulum stress Leukemia Targeted therapy Unfolded protein response (UPR) |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Rahmati M, Ahmadmiri N, Moosavi MA. New-targeted therapy for leukemia based on Endoplasmic Reticulum Stress. Basic Clin Cancer Res. 2022;13(2):133-142.