Anticancer Effects of Copper(II) Complexes Hydrazone −Based Schiff Base: A review
Abstract
Cancer treatment has traditionally been comprised of established treatments such as radiation, surgical excision, and chemotherapy, which can be used alone or in combination. Many therapeutic factors have been extracted from minerals, plants, and animals, the majority of them have been synthesized in the lab, making them a valuable source of innovation pharmacologically. Due to the in vitro cytotoxic effect of metal complexes, the interest in these compounds increases day by day in cancer treatment. The electronic nature of metals, modifications in ligands, and conformational changes in functional groups give rise to the discovery of drugs with different cytotoxic and pharmacokinetic properties. In recent decades, the number of persons receiving chemotherapy has increased considerably. Medicinal inorganic chemistry can take advantage of the unique properties of metal ions to generate new drugs. This has prompted chemists to use various approaches creating novel metal-based anticancer drugs with various mechanisms of action, which are significant in the pharmaceutical industry due to their potent anticancer properties. Schiff base ligands and transition metals are the most researched coordination chemicals. Their applications as anticancer medicines are becoming more significant. This research analyzes various publications linked to copper complexes based on Schiff base hydrazone ligand in cancer treatment, and this review will analyze publications on these compounds' anticancer qualities.
1. Martínez Andrade KA, Lauritano C, Romano G, Ianora A. Ma¬rine microalgae with anti-cancer properties. Marine drugs. 2018;16(5):165.
2. Abdolmaleki A, Asadi A, Gurushankar K, Shayan TK, Sarvestani FA. Importance of nano medicine and new drug therapies for cancer. Advanced Pharmaceutical Bulletin. 2021;11(3):450.
3. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemi¬ology of lung cancer: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e1S-e29S.
4. French SA, Story M, Neumark-Sztainer D, Fulkerson JA, Hannan P. Fast food restaurant use among adolescents: associations with nutri¬ent intake, food choices and behavioral and psychosocial variables. International journal of obesity. 2001;25(12):1823-33.
5. Suzen S, Tekiner-Gulbas B, Shirinzadeh H, Uslu D, Gurer-Orhan H, Gumustas M, et al. Antioxidant activity of indole-based mel¬atonin analogues in erythrocytes and their voltammetric charac¬terization. Journal of Enzyme Inhibition and Medicinal Chemis¬try. 2013;28(6):1143-55.
6. Hossain MS, Sarker S, Shaheed AE, Hossain MM, Alim-Al-Bari A, Karim MR, et al. Thermal and Spectral Characterization of Cr (III), Co (II) and Cd (II) Metal Complexes Containing Bis-Imine Novel Schiff Base Ligand Towards Potential Biological Applica¬tion. Chemical and Biomolecular Engineering. 2017;2(1):41-50.
7. Shaabani B, Khandar AA, Mobaiyen H, Ramazani N, Balula SS, Cunha-Silva L. Novel pseudohalide-bridged Cu (II) complexes with a hydrazone ligand: Evaluation of antimicrobial activity. Polyhedron. 2014;80:166-72.
8. Muthu V, Mylliemngap B, Prasad KT, Behera D, Singh N. Ad¬verse effects observed in lung cancer patients undergoing first-line chemotherapy and effectiveness of supportive care drugs in a resource-limited setting. Lung India: Official Organ of Indian Chest Society. 2019;36(1):32.
9. Mo Q, Deng J, Liu Y, Huang G, Li Z, Yu P, et al. Mixed-ligand Cu (II) hydrazone complexes designed to enhance anticancer activ¬ity. 2018;156:368-80.
10. Abd-Elzaher MM, Labib AA, Mousa HA, Moustafa SA, Ali MM, El-Rashedy AAJb-sujob, et al. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. 2016;5(1):85-96.
11. Mo Q, Deng J, Liu Y, Huang G, Li Z, Yu P, et al. Mixed-ligand Cu (II) hydrazone complexes designed to enhance anticancer activity. European Journal of Medicinal Chemistry. 2018;156:368-80.
12. Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Eigner V, Dušek M, Lotfipour F, et al. Synthesis, characterization and in vitro biological activities of new water-soluble copper (II), zinc (II), and nickel (II) complexes with sulfonato-substituted Schiff base ligand. Inorganica Chimica Acta. 2017;458:171-80.
13. Gönül İ. Synthesis and structural characterization of ONO type tridentate ligands and their Co (II) and Ni (II) complexes: Inves¬tigation of electrical conductivity and antioxidant properties. In¬organica Chimica Acta. 2019;495:119027.
14. Bitu MNA, Hossain MS, Zahid A, Zakaria C, Kudrat-E-Zahan M. Anti-pathogenic activity of cu (II) complexes incorporating Schiff bases: a short review. American Journal of Heterocyclic Chemistry. 2019;5(1):11-23.
15. Abu-Dief AM, Nassr LA. Tailoring, physicochemical character¬ization, antibacterial and DNA binding mode studies of Cu (II) Schiff bases amino acid bioactive agents incorporating 5-bro¬mo-2-hydroxybenzaldehyde. Journal of the Iranian Chemical Society. 2015;12(6):943-55.
16. Anacona JR, Noriega N, Camus J. Synthesis, characterization and antibacterial activity of a tridentate Schiff base derived from cephalothin and sulfadiazine, and its transition metal complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:16-22.
17. Lazny R, Nodzewska A. N, N-dialkylhydrazones in organic syn¬thesis. From simple N, N-dimethylhydrazones to supported chiral auxiliaries. Chemical Reviews. 2010;110(3):1386-434.
18. Crisalli P, Kool ET. Importance of ortho proton donors in catalysis of hydrazone formation. Organic letters. 2013;15(7):1646-9.
19. Parvarinezhad S, Salehi M. Synthesis, characterization, crystal structures, Hirshfeld surface analysis and DFT computational studies of new Schiff Bases derived from Phenylhydrazine. Jour¬nal of Molecular Structure. 2020;1222:128780.
20. Parvarinezhad S, Salehi M. Synthesis, characterization, anti-pro¬liferative activity and chemistry computation of DFT theoretical methods of hydrazine-based Schiff bases derived from methyl acetoacetate and α-hydroxyacetophenone. Journal of Molecular Structure. 2021;1225:129086.
21. Ye W-l, Zhao Y-p, Li H-q, Na R, Li F, Mei Q-b, et al. Doxoru¬bicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Scientific reports. 2015;5(1):1-19.
22. Ji H, Ni H-q, Zhi P, Xi Z-w, Wang W, Shi J-j, et al. Visible-light mediated directed perfluoroalkylation of hydrazones. Organic & Biomolecular Chemistry. 2017;15(28):6014-23.
23. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kata¬oka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distri¬bution, and enhanced in vivo antitumor efficacy. Bioconjugate chemistry. 2005;16(1):122-30.
24. Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper‐based anticancer strategies. Medicinal research reviews. 2010;30(4):708-49.
25. Zhang Z, Yu P, Gou Y, Zhang J, Li S, Cai M, et al. Novel brain-tu¬mor-inhibiting copper (II) compound based on a human serum albumin (HSA)-cell penetrating peptide conjugate. Journal of Medicinal Chemistry. 2019;62(23):10630-44.
26. Chen D, Peng F, Cui QC, Daniel KG, Orlu S, Liu J, et al. Inhi¬bition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis. Front Biosci. 2005;10(1-3):2932-9.
27. Balsa LM, Ruiz MC, de la Parra LSM, Baran EJ, León IE. An¬ticancer and antimetastatic activity of copper (II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. Journal of Inorganic Biochemis¬try. 2020;204:110975.
28. Aslan HG, Akkoç S, Kökbudak Z, Aydın L. Synthesis, character¬ization, and antimicrobial and catalytic activity of a new Schiff base and its metal (II) complexes. Journal of the Iranian Chemi¬cal Society. 2017;14(11):2263-73.
29. Bal S, Orhan B, Connolly JD, Dığrak M, Köytepe S. Synthesis and characterization of some Schiff bases, their metal complexes and thermal, antimicrobial and catalytic features. Journal of Thermal Analysis and Calorimetry. 2015;121(2):909-17.
30. Dhayabaran V, Prakash TD, Renganathan R, Friehs E, Bahne¬mann DW. Novel Bioactive Co (II), Cu (II), Ni (II) and Zn (II) Complexes with Schiff base ligand derived from histidine and 1, 3-Indandione: synthesis, structural elucidation, biological investigation and Docking analysis. Journal of fluorescence. 2017;27(1):135-50.
31. Diez M, Arroyo M, Cerdan F, Munoz M, Martin M, Balibrea J. Serum and tissue trace metal levels in lung cancer. Oncology. 1989;46(4):230-4.
32. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in can¬cer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Re¬search. 2021;1868(2):118893.
33. Marzano C, Pellei M, Tisato F, Santini C. Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2009;9(2):185-211.
34. Kesavan M, Kumar GV, Raja JD, Anitha K, Karthikeyan S, Rajesh J. DNA interaction, antimicrobial, antioxidant and anticancer studies on Cu (II) complexes of Luotonin A. Journal of Photo¬chemistry and Photobiology B: Biology. 2017;167:20-8.
35. Bao X, Xue Y, Xia C, Lu Y, Yang N, Zhao Y. Synthesis and as¬sessment of novel anti-chlamydial benzylidene acylhydrazides derivatives. Letters in Drug Design & Discovery. 2018;15(1):31-6.
36. Hrušková K, Potůčková E, Hergeselová T, Liptáková L, Hašková P, Mingas P, et al. Aroylhydrazone iron chelators: Tuning antioxi¬dant and antiproliferative properties by hydrazide modifications. European journal of medicinal chemistry. 2016;120:97-110.
37. Codd R. Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coordination Chemistry Reviews. 2008;252(12-14):1387-408.
38. Kaplánek R, Havlík M, Dolenský B, Rak J, Džubák P, Konečný P, et al. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorganic & me¬dicinal chemistry. 2015;23(7):1651-9.
39. Guo W-j, Ye S-s, Cao N, Huang J, Gao J, Chen Q-y. ROS-mediated autophagy was involved in cancer cell death induced by novel copper (II) complex. Experimental and Toxicologic Pathology. 2010;62(5):577-82.
40. Gou Y, Zhang Y, Zhang Z, Wang J, Zhou Z, Liang H, et al. Design of an anticancer copper (II) prodrug based on the Lys199 residue of the active targeting human serum albumin nanoparticle carri¬er. Molecular Pharmaceutics. 2017;14(6):1861-73.
41. Lian W-J, Wang X-T, Xie C-Z, Tian H, Song X-Q, Pan H-T, et al. Mixed-ligand copper (II) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Transactions. 2016;45(22):9073-87.
42. Jia L, Xu J, Zhao X, Shen S, Zhou T, Xu Z, et al. Synthesis, charac¬terization, and antitumor activity of three ternary dinuclear cop¬per (II) complexes with a reduced Schiff base ligand and diimine coligands in vitro and in vivo. Journal of inorganic biochemistry. 2016;159:107-19.
43. Singh P, Meena AK, Singh R, Singh J. Synthesis of 2-(3, 4-Di¬chloro-Benzoyl)-Benzoic acid Hydrazide derivatives and as¬sessment of antimicrobial efficacy against E. coli and B. Subtilis WJPR. 2019;8(13):857-69.
44. He Y, Zhu Q, Chen M, Huang Q, Wang W, Li Q, et al. The chang¬ing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measure¬ment of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016;7(43):70803.
45. Ndagi U, Mhlongo N, Soliman M. Metal complexes in cancer therapy-an update from drug design perspective. Drug Des Devel Ther 11: 599–616. 2017.
46. Hu K, Liu C, Li J, Liang F. Copper (ii) complexes based on quin¬oline-derived Schiff-base ligands: Synthesis, characterization, HSA/DNA binding ability, and anticancer activity. Medchem¬comm. 2018;9(10):1663-72.
47. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Auto¬phagy and chemotherapy resistance: a promising therapeutic tar¬get for cancer treatment. Cell death & disease. 2013;4(10):e838-e.
48. Meerloo JV, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture: Springer; 2011. p. 237-45.
49. Yang K, Wu Y, Cheng P, Zhang J, Yang C, Pi B, et al. YAP and ERK mediated mechanical strain‐induced cell cycle progression through RhoA and cytoskeletal dynamics in rat growth plate chon¬drocytes. Journal of Orthopaedic Research. 2016;34(7):1121-9.
50. Deng J, Gou Y, Chen W, Fu X, Deng H. The Cu/ligand stoichiom¬etry effect on the coordination behavior of aroyl hydrazone with copper (II): Structure, anticancer activity and anticancer mech¬anism. Bioorganic & Medicinal Chemistry. 2016;24(10):2190-8.
51. Shen S, Chen H, Zhu T, Ma X, Xu J, Zhu W, et al. Synthesis, characterization and anticancer activities of transition metal complexes with a nicotinohydrazone ligand. Oncology Letters. 2017;13(5):3169-76.
52. DEMİR BS, GÖNÜL İ, ÇELİK GG, İPEKBAYRAK S, SAY¬GIDEĞER Y. Synthesis and Anticancer Activities of Water Solu¬ble Schiff Base Metal Complexes. Adıyaman University Journal of Science. 2020;10(2):441-54
53. Zhang Q, Li Z, Liu J. Applying Cu (II) complexes assisted by wa¬ter‐soluble porphyrin to DNA binding and selective anticancer activities. Applied Organometallic Chemistry. 2020;34(10):e5857.
54. Chandra S, Kumar S. Synthesis, spectroscopic, anticancer, anti¬bacterial and antifungal studies of Ni (II) and Cu (II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene]. Spectrochimica Acta Part A: Molecular and Biomolecular Spec¬troscopy. 2015;135:356-63.
55. Abou-Melha K. Spectral, modeling and anticancer activity stud¬ies on the newly synthesized N-allyl-2-(2, 4-dinitrophenyl) hy¬drazine-1-carbothioamide and some bivalent metal complexes. Journal of Molecular Structure. 2021;1223:128949.
56. El-Saied FA, Salem TA, Shakdofa MM, Al-Hakimi AN, Radwan AS. Antitumor activity of synthesized and characterized Cu (II), Ni (II) and Co (II) complexes of hydrazone-oxime ligands de¬rived from 3-(hydroxyimino) butan-2-one. Beni-Suef University journal of basic and applied sciences. 2018;7(4):420-9.
57. Şengül EE, Göktürk T, Topkaya CG, Gup R. Synthesis, charac¬terization and dna interaction of Cu (II) complexes with hydra¬zone-Schiff base ligands bearing alkyl quaternary ammonium salts. Journal of the Chilean Chemical Society. 2020;65(2):4754-8.
58. Özdemir ÜÖ, Aktan E, Ilbiz F, Gündüzalp AB, Özbek N, Sarı M, et al. Characterization, antibacterial, anticarbonic anhydrase II isoenzyme, anticancer, electrochemical and computational stud¬ies of sulfonic acid hydrazide derivative and its Cu (II) complex. Inorganica Chimica Acta. 2014;423:194-203.
59. Fekri R, Salehi M, Asadi A, Kubicki M. Synthesis, characteriza¬tion, anticancer and antibacterial evaluation of Schiff base lig¬ands derived from hydrazone and their transition metal complex¬es. Inorganica Chimica Acta. 2019;484:245-54.
60. Prasad KS, Kumar LS, Shekar SC, Prasad M, Revanasiddappa HD. Oxovanadium complexes with bidentate N, O ligands: syn¬thesis, characterization, DNA binding, nuclease activity and an¬timicrobial studies. Chemical Sciences Journal. 2011;12:1-10.
61. Thangadurai TD, Natarajan K. Mixed ligand complexes of ruthe¬nium (II) containing α, β-unsaturated-β-ketoaminesand their an¬tibacterial activity. Transition Metal Chemistry. 2001;26(4):500-4.
62. Patel AK, Jadeja RN, Roy H, Patel R, Patel SK, Butcher RJ, et al. Copper (II) hydrazone complexes with different nuclearities and geometries: Synthesis, structural characterization, antioxi¬dant SOD activity and antiproliferative properties. Polyhedron. 2020;186:114624.
63. Bergamini FR, Nunes JH, de Carvalho MA, Ribeiro MA, de Paiva PP, Banzato TP, et al. Polynuclear copper (II) complexes with na¬lidixic acid hydrazones: Antiproliferative activity and selectivity assessment over a panel of tumor cells. Inorganica Chimica Acta. 2019;484:491-502.
64. Hussain A, Alajmi M, Rehman MT, Amir S, Husain F, Alsalme A, et al. Copper (II) complexes as potential anticancer and Non¬steroidal anti-inflammatory agents. vitro; 2019.
65. Chang H-Q, Jia L, Xu J, Xu Z-Q, Chen R-H, Wu W-N, et al. Syn¬theses, characterizations, antitumor activities and cell apoptosis induction of Cu (II), Zn (II) and Cd (II) complexes with hydra¬zone Schiff base derived from isonicotinohydrazide. Inorganic Chemistry Communications. 2015;57:8-10.
66. Ebrahimipour SY, Sheikhshoaie I, Castro J, Haase W, Mohamadi M, Foro S, et al. A novel cationic copper (II) Schiff base com¬plex: Synthesis, characterization, crystal structure, electrochem¬ical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorganica Chimica Acta. 2015;430:245-52.
67. Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Jun¬ghare V, et al. The DNA-and protein-binding properties and cy¬totoxicity of a new copper (II) hydrazone Schiff base complex. Journal of Coordination Chemistry. 2021;74(9-10):1482-504.
68. DEMİR BS, GÖNÜL İ, ÇELİK GG, İPEKBAYRAK S, SAY¬GIDEĞER Y. Synthesis and Anticancer Activities of Water Solu¬ble Schiff Base Metal Complexes. Adıyaman University Journal of Science.10(2):441-54.
69. Chang H-Q, Jia L, Xu J, Xu Z-Q, Chen R-H, Wu W-N, et al. Syn¬theses, characterizations, antitumor activities and cell apoptosis induction of Cu(II), Zn(II) and Cd(II) complexes with hydrazone Schiff base derived from isonicotinohydrazide. Inorganic Chem¬istry Communications. 2015;57:8-10.
70. Tabassum S, Asim A, Khan RA, Arjmand F, Rajakumar D, Ba¬laji P, et al. A multifunctional molecular entity CuII–SnIV het¬erobimetallic complex as a potential cancer chemotherapeutic agent: DNA binding/cleavage, SOD mimetic, topoisomerase Iα inhibitory and in vitro cytotoxic activities. RSC Advances. 2015;5(59):47439-50.
71. Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, et al. Copper complexes with phosphonium containing hydrazone li¬gand: topoisomerase inhibition and cytotoxicity study. Eur J Med Chem. 2014;76:397-407.
72. Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Jun¬ghare V, et al. The DNA-and protein-binding properties and cy¬totoxicity of a new copper (II) hydrazone Schiff base complex. Journal of Coordination Chemistry. 2021:1-23.
73. Bao R-D, Song X-Q, Kong Y-j, Li F-F, Liao W-H, Zhou J, et al. A new Schiff base copper(II) complex induces cancer cell growth inhibition and apoptosis by multiple mechanisms. Journal of In¬organic Biochemistry. 2020;208:111103.
74. Dong J, Li Y, Zhao P, Xu T, Zhang B, Gao L, et al. Synthesis and Biological Evaluation of Six L-tryptophan Schiff base Copper(II) Complexes as Promising Anticancer Agents In Vitro. Journal of Molecular Structure. 2022:132578.
75. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nature Reviews Molecular Cell Biology. 2022;23(1):74-88.
76. Roskoski R, Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res. 2019;139:471-88.
77. Hu K, Liu C, Li J, Liang F. Copper(ii) complexes based on quin¬oline-derived Schiff-base ligands: synthesis, characterization, HSA/DNA binding ability, and anticancer activity. Medchem¬comm. 2018;9(10):1663-72.
78. Hajrezaie M, Paydar M, Zorofchian Moghadamtousi S, Has¬sandarvish P, Gwaram NS, Zahedifard M, et al. A Schiff Base-De¬rived Copper (II) Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway. The Sci¬entific World Journal. 2014;2014:540463.
79. Zhou XQ, Li Y, Zhang DY, Nie Y, Li ZJ, Gu W, et al. Copper com¬plexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis. Eur J Med Chem. 2016;114:244-56.
80. Lian WJ, Wang XT, Xie CZ, Tian H, Song XQ, Pan HT, et al. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Trans. 2016;45(22):9073-87.
81. Kucka K, Wajant H. Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Recep¬. tor Superfamily. Frontiers in Cell and Developmental Biology. 2021;8.
82. Urbani A, Prosdocimi E, Carrer A, Checchetto V, Szabò I. Mito¬chondrial Ion Channels of the Inner Membrane and Their Reg¬ulation in Cell Death Signaling. Frontiers in Cell and Develop¬mental Biology. 2021;8.
83. Farmer KM, Ghag G, Puangmalai N, Montalbano M, Bhatt N, Kayed R. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer’s disease. Acta Neuropatho¬logica Communications. 2020;8(1):132.
84. Julien O, Wells JA. Caspases and their substrates. Cell Death Dif¬fer. 2017;24(8):1380-9.
85. Xu X, Lai Y, Hua Z-C. Apoptosis and apoptotic body: dis¬ease message and therapeutic target potentials. Biosci Rep. 2019;39(1):BSR20180992.
86. Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death & Dif¬ferentiation. 2018;25(1):65-80.
87. Xia Y, Liu X, Zhang L, Zhang J, Li C, Zhang N, et al. A new Schiff base coordinated copper(II) compound induces apoptosis and in¬hibits tumor growth in gastric cancer. Cancer Cell International. 2019;19(1):81.
88. Xu J, Zhou T, Xu Z-Q, Gu X-N, Wu W-N, Chen H, et al. Synthesis, crystal structures and antitumor activities of copper (II) com¬plexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. Journal of Molecular Structure. 2017;1128:448-54.
89. Bao RD, Song XQ, Kong YJ, Li FF, Liao WH, Zhou J, et al. A new Schiff base copper(II) complex induces cancer cell growth inhi¬bition and apoptosis by multiple mechanisms. J Inorg Biochem. 2020;208:111103.
90. Zhou X-Q, Li Y, Zhang D-Y, Nie Y, Li Z-J, Gu W, et al. Copper complexes based on chiral Schiff-base ligands: DNA/BSA bind¬ing ability, DNA cleavage activity, cytotoxicity and mecha¬nism of apoptosis. European Journal of Medicinal Chemistry. 2016;114:244-56.
91. Garnier F, Couturier M, Débat H, Nadal M. Archaea: A Gold Mine for Topoisomerase Diversity. Frontiers in Microbiology. 2021;12.
92. Liu J, Qu L, Meng L, Shou C. Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1- CXCL1 pathway. Journal of Experimental & Clinical Cancer Re¬search. 2019;38(1):370.
93. Tabassum S, Asim A, Khan RA, Hussain Z, Srivastav S, Srikrishna S, et al. Chiral heterobimetallic complexes targeting human DNA-to¬poisomerase Iα. Dalton Transactions. 2013;42(48):16749-61.
94. Dankhoff K, Gold M, Kober L, Schmitt F, Pfeifer L, Dürrmann A, et al. Copper (II) complexes with tridentate Schiff base-like lig¬ands: solid state and solution structures and anticancer activity. Dalton Transactions. 2019;48(40):15220-30.
95. Duff B, Thangella VR, Creaven BS, Walsh M, Egan DA. Anti-can¬cer activity and mutagenic potential of novel copper (II) quinoli¬none Schiff base complexes in hepatocarcinoma cells. European journal of pharmacology. 2012;689(1-3):45-55.
96. Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology. 2020;219(1).
97. Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci. 2018;19(11):3466.
98. Raudenska M, Balvan J, Masarik M. Crosstalk between auto¬phagy auto¬phagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Molecular Cancer. 2021;20(1):140.
99. Kordestani N, Amiri Rudbari H, Fernandes AR, Raposo LR, Luz A, Baptista PV, et al. Copper(ii) complexes with tridentate halogen-substituted Schiff base ligands: synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalton Transac¬tions. 2021;50(11):3990-4007.
2. Abdolmaleki A, Asadi A, Gurushankar K, Shayan TK, Sarvestani FA. Importance of nano medicine and new drug therapies for cancer. Advanced Pharmaceutical Bulletin. 2021;11(3):450.
3. Alberg AJ, Brock MV, Ford JG, Samet JM, Spivack SD. Epidemi¬ology of lung cancer: Diagnosis and management of lung cancer: American College of Chest Physicians evidence-based clinical practice guidelines. Chest. 2013;143(5):e1S-e29S.
4. French SA, Story M, Neumark-Sztainer D, Fulkerson JA, Hannan P. Fast food restaurant use among adolescents: associations with nutri¬ent intake, food choices and behavioral and psychosocial variables. International journal of obesity. 2001;25(12):1823-33.
5. Suzen S, Tekiner-Gulbas B, Shirinzadeh H, Uslu D, Gurer-Orhan H, Gumustas M, et al. Antioxidant activity of indole-based mel¬atonin analogues in erythrocytes and their voltammetric charac¬terization. Journal of Enzyme Inhibition and Medicinal Chemis¬try. 2013;28(6):1143-55.
6. Hossain MS, Sarker S, Shaheed AE, Hossain MM, Alim-Al-Bari A, Karim MR, et al. Thermal and Spectral Characterization of Cr (III), Co (II) and Cd (II) Metal Complexes Containing Bis-Imine Novel Schiff Base Ligand Towards Potential Biological Applica¬tion. Chemical and Biomolecular Engineering. 2017;2(1):41-50.
7. Shaabani B, Khandar AA, Mobaiyen H, Ramazani N, Balula SS, Cunha-Silva L. Novel pseudohalide-bridged Cu (II) complexes with a hydrazone ligand: Evaluation of antimicrobial activity. Polyhedron. 2014;80:166-72.
8. Muthu V, Mylliemngap B, Prasad KT, Behera D, Singh N. Ad¬verse effects observed in lung cancer patients undergoing first-line chemotherapy and effectiveness of supportive care drugs in a resource-limited setting. Lung India: Official Organ of Indian Chest Society. 2019;36(1):32.
9. Mo Q, Deng J, Liu Y, Huang G, Li Z, Yu P, et al. Mixed-ligand Cu (II) hydrazone complexes designed to enhance anticancer activ¬ity. 2018;156:368-80.
10. Abd-Elzaher MM, Labib AA, Mousa HA, Moustafa SA, Ali MM, El-Rashedy AAJb-sujob, et al. Synthesis, anticancer activity and molecular docking study of Schiff base complexes containing thiazole moiety. 2016;5(1):85-96.
11. Mo Q, Deng J, Liu Y, Huang G, Li Z, Yu P, et al. Mixed-ligand Cu (II) hydrazone complexes designed to enhance anticancer activity. European Journal of Medicinal Chemistry. 2018;156:368-80.
12. Hosseini-Yazdi SA, Mirzaahmadi A, Khandar AA, Eigner V, Dušek M, Lotfipour F, et al. Synthesis, characterization and in vitro biological activities of new water-soluble copper (II), zinc (II), and nickel (II) complexes with sulfonato-substituted Schiff base ligand. Inorganica Chimica Acta. 2017;458:171-80.
13. Gönül İ. Synthesis and structural characterization of ONO type tridentate ligands and their Co (II) and Ni (II) complexes: Inves¬tigation of electrical conductivity and antioxidant properties. In¬organica Chimica Acta. 2019;495:119027.
14. Bitu MNA, Hossain MS, Zahid A, Zakaria C, Kudrat-E-Zahan M. Anti-pathogenic activity of cu (II) complexes incorporating Schiff bases: a short review. American Journal of Heterocyclic Chemistry. 2019;5(1):11-23.
15. Abu-Dief AM, Nassr LA. Tailoring, physicochemical character¬ization, antibacterial and DNA binding mode studies of Cu (II) Schiff bases amino acid bioactive agents incorporating 5-bro¬mo-2-hydroxybenzaldehyde. Journal of the Iranian Chemical Society. 2015;12(6):943-55.
16. Anacona JR, Noriega N, Camus J. Synthesis, characterization and antibacterial activity of a tridentate Schiff base derived from cephalothin and sulfadiazine, and its transition metal complexes. Spectrochim Acta A Mol Biomol Spectrosc. 2015;137:16-22.
17. Lazny R, Nodzewska A. N, N-dialkylhydrazones in organic syn¬thesis. From simple N, N-dimethylhydrazones to supported chiral auxiliaries. Chemical Reviews. 2010;110(3):1386-434.
18. Crisalli P, Kool ET. Importance of ortho proton donors in catalysis of hydrazone formation. Organic letters. 2013;15(7):1646-9.
19. Parvarinezhad S, Salehi M. Synthesis, characterization, crystal structures, Hirshfeld surface analysis and DFT computational studies of new Schiff Bases derived from Phenylhydrazine. Jour¬nal of Molecular Structure. 2020;1222:128780.
20. Parvarinezhad S, Salehi M. Synthesis, characterization, anti-pro¬liferative activity and chemistry computation of DFT theoretical methods of hydrazine-based Schiff bases derived from methyl acetoacetate and α-hydroxyacetophenone. Journal of Molecular Structure. 2021;1225:129086.
21. Ye W-l, Zhao Y-p, Li H-q, Na R, Li F, Mei Q-b, et al. Doxoru¬bicin-poly (ethylene glycol)-alendronate self-assembled micelles for targeted therapy of bone metastatic cancer. Scientific reports. 2015;5(1):1-19.
22. Ji H, Ni H-q, Zhi P, Xi Z-w, Wang W, Shi J-j, et al. Visible-light mediated directed perfluoroalkylation of hydrazones. Organic & Biomolecular Chemistry. 2017;15(28):6014-23.
23. Bae Y, Nishiyama N, Fukushima S, Koyama H, Yasuhiro M, Kata¬oka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distri¬bution, and enhanced in vivo antitumor efficacy. Bioconjugate chemistry. 2005;16(1):122-30.
24. Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper‐based anticancer strategies. Medicinal research reviews. 2010;30(4):708-49.
25. Zhang Z, Yu P, Gou Y, Zhang J, Li S, Cai M, et al. Novel brain-tu¬mor-inhibiting copper (II) compound based on a human serum albumin (HSA)-cell penetrating peptide conjugate. Journal of Medicinal Chemistry. 2019;62(23):10630-44.
26. Chen D, Peng F, Cui QC, Daniel KG, Orlu S, Liu J, et al. Inhi¬bition of prostate cancer cellular proteasome activity by a pyrrolidine dithiocarbamate-copper complex is associated with suppression of proliferation and induction of apoptosis. Front Biosci. 2005;10(1-3):2932-9.
27. Balsa LM, Ruiz MC, de la Parra LSM, Baran EJ, León IE. An¬ticancer and antimetastatic activity of copper (II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. Journal of Inorganic Biochemis¬try. 2020;204:110975.
28. Aslan HG, Akkoç S, Kökbudak Z, Aydın L. Synthesis, character¬ization, and antimicrobial and catalytic activity of a new Schiff base and its metal (II) complexes. Journal of the Iranian Chemi¬cal Society. 2017;14(11):2263-73.
29. Bal S, Orhan B, Connolly JD, Dığrak M, Köytepe S. Synthesis and characterization of some Schiff bases, their metal complexes and thermal, antimicrobial and catalytic features. Journal of Thermal Analysis and Calorimetry. 2015;121(2):909-17.
30. Dhayabaran V, Prakash TD, Renganathan R, Friehs E, Bahne¬mann DW. Novel Bioactive Co (II), Cu (II), Ni (II) and Zn (II) Complexes with Schiff base ligand derived from histidine and 1, 3-Indandione: synthesis, structural elucidation, biological investigation and Docking analysis. Journal of fluorescence. 2017;27(1):135-50.
31. Diez M, Arroyo M, Cerdan F, Munoz M, Martin M, Balibrea J. Serum and tissue trace metal levels in lung cancer. Oncology. 1989;46(4):230-4.
32. Shanbhag VC, Gudekar N, Jasmer K, Papageorgiou C, Singh K, Petris MJ. Copper metabolism as a unique vulnerability in can¬cer. Biochimica et Biophysica Acta (BBA)-Molecular Cell Re¬search. 2021;1868(2):118893.
33. Marzano C, Pellei M, Tisato F, Santini C. Copper complexes as anticancer agents. Anti-Cancer Agents in Medicinal Chemistry (Formerly Current Medicinal Chemistry-Anti-Cancer Agents). 2009;9(2):185-211.
34. Kesavan M, Kumar GV, Raja JD, Anitha K, Karthikeyan S, Rajesh J. DNA interaction, antimicrobial, antioxidant and anticancer studies on Cu (II) complexes of Luotonin A. Journal of Photo¬chemistry and Photobiology B: Biology. 2017;167:20-8.
35. Bao X, Xue Y, Xia C, Lu Y, Yang N, Zhao Y. Synthesis and as¬sessment of novel anti-chlamydial benzylidene acylhydrazides derivatives. Letters in Drug Design & Discovery. 2018;15(1):31-6.
36. Hrušková K, Potůčková E, Hergeselová T, Liptáková L, Hašková P, Mingas P, et al. Aroylhydrazone iron chelators: Tuning antioxi¬dant and antiproliferative properties by hydrazide modifications. European journal of medicinal chemistry. 2016;120:97-110.
37. Codd R. Traversing the coordination chemistry and chemical biology of hydroxamic acids. Coordination Chemistry Reviews. 2008;252(12-14):1387-408.
38. Kaplánek R, Havlík M, Dolenský B, Rak J, Džubák P, Konečný P, et al. Synthesis and biological activity evaluation of hydrazone derivatives based on a Tröger’s base skeleton. Bioorganic & me¬dicinal chemistry. 2015;23(7):1651-9.
39. Guo W-j, Ye S-s, Cao N, Huang J, Gao J, Chen Q-y. ROS-mediated autophagy was involved in cancer cell death induced by novel copper (II) complex. Experimental and Toxicologic Pathology. 2010;62(5):577-82.
40. Gou Y, Zhang Y, Zhang Z, Wang J, Zhou Z, Liang H, et al. Design of an anticancer copper (II) prodrug based on the Lys199 residue of the active targeting human serum albumin nanoparticle carri¬er. Molecular Pharmaceutics. 2017;14(6):1861-73.
41. Lian W-J, Wang X-T, Xie C-Z, Tian H, Song X-Q, Pan H-T, et al. Mixed-ligand copper (II) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Transactions. 2016;45(22):9073-87.
42. Jia L, Xu J, Zhao X, Shen S, Zhou T, Xu Z, et al. Synthesis, charac¬terization, and antitumor activity of three ternary dinuclear cop¬per (II) complexes with a reduced Schiff base ligand and diimine coligands in vitro and in vivo. Journal of inorganic biochemistry. 2016;159:107-19.
43. Singh P, Meena AK, Singh R, Singh J. Synthesis of 2-(3, 4-Di¬chloro-Benzoyl)-Benzoic acid Hydrazide derivatives and as¬sessment of antimicrobial efficacy against E. coli and B. Subtilis WJPR. 2019;8(13):857-69.
44. He Y, Zhu Q, Chen M, Huang Q, Wang W, Li Q, et al. The chang¬ing 50% inhibitory concentration (IC50) of cisplatin: A pilot study on the artifacts of the MTT assay and the precise measure¬ment of density-dependent chemoresistance in ovarian cancer. Oncotarget. 2016;7(43):70803.
45. Ndagi U, Mhlongo N, Soliman M. Metal complexes in cancer therapy-an update from drug design perspective. Drug Des Devel Ther 11: 599–616. 2017.
46. Hu K, Liu C, Li J, Liang F. Copper (ii) complexes based on quin¬oline-derived Schiff-base ligands: Synthesis, characterization, HSA/DNA binding ability, and anticancer activity. Medchem¬comm. 2018;9(10):1663-72.
47. Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, et al. Auto¬phagy and chemotherapy resistance: a promising therapeutic tar¬get for cancer treatment. Cell death & disease. 2013;4(10):e838-e.
48. Meerloo JV, Kaspers GJ, Cloos J. Cell sensitivity assays: the MTT assay. Cancer cell culture: Springer; 2011. p. 237-45.
49. Yang K, Wu Y, Cheng P, Zhang J, Yang C, Pi B, et al. YAP and ERK mediated mechanical strain‐induced cell cycle progression through RhoA and cytoskeletal dynamics in rat growth plate chon¬drocytes. Journal of Orthopaedic Research. 2016;34(7):1121-9.
50. Deng J, Gou Y, Chen W, Fu X, Deng H. The Cu/ligand stoichiom¬etry effect on the coordination behavior of aroyl hydrazone with copper (II): Structure, anticancer activity and anticancer mech¬anism. Bioorganic & Medicinal Chemistry. 2016;24(10):2190-8.
51. Shen S, Chen H, Zhu T, Ma X, Xu J, Zhu W, et al. Synthesis, characterization and anticancer activities of transition metal complexes with a nicotinohydrazone ligand. Oncology Letters. 2017;13(5):3169-76.
52. DEMİR BS, GÖNÜL İ, ÇELİK GG, İPEKBAYRAK S, SAY¬GIDEĞER Y. Synthesis and Anticancer Activities of Water Solu¬ble Schiff Base Metal Complexes. Adıyaman University Journal of Science. 2020;10(2):441-54
53. Zhang Q, Li Z, Liu J. Applying Cu (II) complexes assisted by wa¬ter‐soluble porphyrin to DNA binding and selective anticancer activities. Applied Organometallic Chemistry. 2020;34(10):e5857.
54. Chandra S, Kumar S. Synthesis, spectroscopic, anticancer, anti¬bacterial and antifungal studies of Ni (II) and Cu (II) complexes with hydrazine carboxamide, 2-[3-methyl-2-thienyl methylene]. Spectrochimica Acta Part A: Molecular and Biomolecular Spec¬troscopy. 2015;135:356-63.
55. Abou-Melha K. Spectral, modeling and anticancer activity stud¬ies on the newly synthesized N-allyl-2-(2, 4-dinitrophenyl) hy¬drazine-1-carbothioamide and some bivalent metal complexes. Journal of Molecular Structure. 2021;1223:128949.
56. El-Saied FA, Salem TA, Shakdofa MM, Al-Hakimi AN, Radwan AS. Antitumor activity of synthesized and characterized Cu (II), Ni (II) and Co (II) complexes of hydrazone-oxime ligands de¬rived from 3-(hydroxyimino) butan-2-one. Beni-Suef University journal of basic and applied sciences. 2018;7(4):420-9.
57. Şengül EE, Göktürk T, Topkaya CG, Gup R. Synthesis, charac¬terization and dna interaction of Cu (II) complexes with hydra¬zone-Schiff base ligands bearing alkyl quaternary ammonium salts. Journal of the Chilean Chemical Society. 2020;65(2):4754-8.
58. Özdemir ÜÖ, Aktan E, Ilbiz F, Gündüzalp AB, Özbek N, Sarı M, et al. Characterization, antibacterial, anticarbonic anhydrase II isoenzyme, anticancer, electrochemical and computational stud¬ies of sulfonic acid hydrazide derivative and its Cu (II) complex. Inorganica Chimica Acta. 2014;423:194-203.
59. Fekri R, Salehi M, Asadi A, Kubicki M. Synthesis, characteriza¬tion, anticancer and antibacterial evaluation of Schiff base lig¬ands derived from hydrazone and their transition metal complex¬es. Inorganica Chimica Acta. 2019;484:245-54.
60. Prasad KS, Kumar LS, Shekar SC, Prasad M, Revanasiddappa HD. Oxovanadium complexes with bidentate N, O ligands: syn¬thesis, characterization, DNA binding, nuclease activity and an¬timicrobial studies. Chemical Sciences Journal. 2011;12:1-10.
61. Thangadurai TD, Natarajan K. Mixed ligand complexes of ruthe¬nium (II) containing α, β-unsaturated-β-ketoaminesand their an¬tibacterial activity. Transition Metal Chemistry. 2001;26(4):500-4.
62. Patel AK, Jadeja RN, Roy H, Patel R, Patel SK, Butcher RJ, et al. Copper (II) hydrazone complexes with different nuclearities and geometries: Synthesis, structural characterization, antioxi¬dant SOD activity and antiproliferative properties. Polyhedron. 2020;186:114624.
63. Bergamini FR, Nunes JH, de Carvalho MA, Ribeiro MA, de Paiva PP, Banzato TP, et al. Polynuclear copper (II) complexes with na¬lidixic acid hydrazones: Antiproliferative activity and selectivity assessment over a panel of tumor cells. Inorganica Chimica Acta. 2019;484:491-502.
64. Hussain A, Alajmi M, Rehman MT, Amir S, Husain F, Alsalme A, et al. Copper (II) complexes as potential anticancer and Non¬steroidal anti-inflammatory agents. vitro; 2019.
65. Chang H-Q, Jia L, Xu J, Xu Z-Q, Chen R-H, Wu W-N, et al. Syn¬theses, characterizations, antitumor activities and cell apoptosis induction of Cu (II), Zn (II) and Cd (II) complexes with hydra¬zone Schiff base derived from isonicotinohydrazide. Inorganic Chemistry Communications. 2015;57:8-10.
66. Ebrahimipour SY, Sheikhshoaie I, Castro J, Haase W, Mohamadi M, Foro S, et al. A novel cationic copper (II) Schiff base com¬plex: Synthesis, characterization, crystal structure, electrochem¬ical evaluation, anti-cancer activity, and preparation of its metal oxide nanoparticles. Inorganica Chimica Acta. 2015;430:245-52.
67. Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Jun¬ghare V, et al. The DNA-and protein-binding properties and cy¬totoxicity of a new copper (II) hydrazone Schiff base complex. Journal of Coordination Chemistry. 2021;74(9-10):1482-504.
68. DEMİR BS, GÖNÜL İ, ÇELİK GG, İPEKBAYRAK S, SAY¬GIDEĞER Y. Synthesis and Anticancer Activities of Water Solu¬ble Schiff Base Metal Complexes. Adıyaman University Journal of Science.10(2):441-54.
69. Chang H-Q, Jia L, Xu J, Xu Z-Q, Chen R-H, Wu W-N, et al. Syn¬theses, characterizations, antitumor activities and cell apoptosis induction of Cu(II), Zn(II) and Cd(II) complexes with hydrazone Schiff base derived from isonicotinohydrazide. Inorganic Chem¬istry Communications. 2015;57:8-10.
70. Tabassum S, Asim A, Khan RA, Arjmand F, Rajakumar D, Ba¬laji P, et al. A multifunctional molecular entity CuII–SnIV het¬erobimetallic complex as a potential cancer chemotherapeutic agent: DNA binding/cleavage, SOD mimetic, topoisomerase Iα inhibitory and in vitro cytotoxic activities. RSC Advances. 2015;5(59):47439-50.
71. Chew ST, Lo KM, Lee SK, Heng MP, Teoh WY, Sim KS, et al. Copper complexes with phosphonium containing hydrazone li¬gand: topoisomerase inhibition and cytotoxicity study. Eur J Med Chem. 2014;76:397-407.
72. Biswas N, Saha S, Biswas BK, Chowdhury M, Rahaman A, Jun¬ghare V, et al. The DNA-and protein-binding properties and cy¬totoxicity of a new copper (II) hydrazone Schiff base complex. Journal of Coordination Chemistry. 2021:1-23.
73. Bao R-D, Song X-Q, Kong Y-j, Li F-F, Liao W-H, Zhou J, et al. A new Schiff base copper(II) complex induces cancer cell growth inhibition and apoptosis by multiple mechanisms. Journal of In¬organic Biochemistry. 2020;208:111103.
74. Dong J, Li Y, Zhao P, Xu T, Zhang B, Gao L, et al. Synthesis and Biological Evaluation of Six L-tryptophan Schiff base Copper(II) Complexes as Promising Anticancer Agents In Vitro. Journal of Molecular Structure. 2022:132578.
75. Matthews HK, Bertoli C, de Bruin RAM. Cell cycle control in cancer. Nature Reviews Molecular Cell Biology. 2022;23(1):74-88.
76. Roskoski R, Jr. Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs. Pharmacol Res. 2019;139:471-88.
77. Hu K, Liu C, Li J, Liang F. Copper(ii) complexes based on quin¬oline-derived Schiff-base ligands: synthesis, characterization, HSA/DNA binding ability, and anticancer activity. Medchem¬comm. 2018;9(10):1663-72.
78. Hajrezaie M, Paydar M, Zorofchian Moghadamtousi S, Has¬sandarvish P, Gwaram NS, Zahedifard M, et al. A Schiff Base-De¬rived Copper (II) Complex Is a Potent Inducer of Apoptosis in Colon Cancer Cells by Activating the Intrinsic Pathway. The Sci¬entific World Journal. 2014;2014:540463.
79. Zhou XQ, Li Y, Zhang DY, Nie Y, Li ZJ, Gu W, et al. Copper com¬plexes based on chiral Schiff-base ligands: DNA/BSA binding ability, DNA cleavage activity, cytotoxicity and mechanism of apoptosis. Eur J Med Chem. 2016;114:244-56.
80. Lian WJ, Wang XT, Xie CZ, Tian H, Song XQ, Pan HT, et al. Mixed-ligand copper(ii) Schiff base complexes: the role of the co-ligand in DNA binding, DNA cleavage, protein binding and cytotoxicity. Dalton Trans. 2016;45(22):9073-87.
81. Kucka K, Wajant H. Receptor Oligomerization and Its Relevance for Signaling by Receptors of the Tumor Necrosis Factor Recep¬. tor Superfamily. Frontiers in Cell and Developmental Biology. 2021;8.
82. Urbani A, Prosdocimi E, Carrer A, Checchetto V, Szabò I. Mito¬chondrial Ion Channels of the Inner Membrane and Their Reg¬ulation in Cell Death Signaling. Frontiers in Cell and Develop¬mental Biology. 2021;8.
83. Farmer KM, Ghag G, Puangmalai N, Montalbano M, Bhatt N, Kayed R. P53 aggregation, interactions with tau, and impaired DNA damage response in Alzheimer’s disease. Acta Neuropatho¬logica Communications. 2020;8(1):132.
84. Julien O, Wells JA. Caspases and their substrates. Cell Death Dif¬fer. 2017;24(8):1380-9.
85. Xu X, Lai Y, Hua Z-C. Apoptosis and apoptotic body: dis¬ease message and therapeutic target potentials. Biosci Rep. 2019;39(1):BSR20180992.
86. Kale J, Osterlund EJ, Andrews DW. BCL-2 family proteins: changing partners in the dance towards death. Cell Death & Dif¬ferentiation. 2018;25(1):65-80.
87. Xia Y, Liu X, Zhang L, Zhang J, Li C, Zhang N, et al. A new Schiff base coordinated copper(II) compound induces apoptosis and in¬hibits tumor growth in gastric cancer. Cancer Cell International. 2019;19(1):81.
88. Xu J, Zhou T, Xu Z-Q, Gu X-N, Wu W-N, Chen H, et al. Synthesis, crystal structures and antitumor activities of copper (II) com¬plexes with a 2-acetylpyrazine isonicotinoyl hydrazone ligand. Journal of Molecular Structure. 2017;1128:448-54.
89. Bao RD, Song XQ, Kong YJ, Li FF, Liao WH, Zhou J, et al. A new Schiff base copper(II) complex induces cancer cell growth inhi¬bition and apoptosis by multiple mechanisms. J Inorg Biochem. 2020;208:111103.
90. Zhou X-Q, Li Y, Zhang D-Y, Nie Y, Li Z-J, Gu W, et al. Copper complexes based on chiral Schiff-base ligands: DNA/BSA bind¬ing ability, DNA cleavage activity, cytotoxicity and mecha¬nism of apoptosis. European Journal of Medicinal Chemistry. 2016;114:244-56.
91. Garnier F, Couturier M, Débat H, Nadal M. Archaea: A Gold Mine for Topoisomerase Diversity. Frontiers in Microbiology. 2021;12.
92. Liu J, Qu L, Meng L, Shou C. Topoisomerase inhibitors promote cancer cell motility via ROS-mediated activation of JAK2-STAT1- CXCL1 pathway. Journal of Experimental & Clinical Cancer Re¬search. 2019;38(1):370.
93. Tabassum S, Asim A, Khan RA, Hussain Z, Srivastav S, Srikrishna S, et al. Chiral heterobimetallic complexes targeting human DNA-to¬poisomerase Iα. Dalton Transactions. 2013;42(48):16749-61.
94. Dankhoff K, Gold M, Kober L, Schmitt F, Pfeifer L, Dürrmann A, et al. Copper (II) complexes with tridentate Schiff base-like lig¬ands: solid state and solution structures and anticancer activity. Dalton Transactions. 2019;48(40):15220-30.
95. Duff B, Thangella VR, Creaven BS, Walsh M, Egan DA. Anti-can¬cer activity and mutagenic potential of novel copper (II) quinoli¬none Schiff base complexes in hepatocarcinoma cells. European journal of pharmacology. 2012;689(1-3):45-55.
96. Towers CG, Wodetzki D, Thorburn A. Autophagy and cancer: Modulation of cell death pathways and cancer cell adaptations. Journal of Cell Biology. 2020;219(1).
97. Yun CW, Lee SH. The Roles of Autophagy in Cancer. Int J Mol Sci. 2018;19(11):3466.
98. Raudenska M, Balvan J, Masarik M. Crosstalk between auto¬phagy auto¬phagy inhibitors and endosome-related secretory pathways: a challenge for autophagy-based treatment of solid cancers. Molecular Cancer. 2021;20(1):140.
99. Kordestani N, Amiri Rudbari H, Fernandes AR, Raposo LR, Luz A, Baptista PV, et al. Copper(ii) complexes with tridentate halogen-substituted Schiff base ligands: synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities. Dalton Transac¬tions. 2021;50(11):3990-4007.
Files | ||
Issue | Vol 13 No 2 (2021) | |
Section | Reviews | |
DOI | https://doi.org/10.18502/bccr.v13i2.10029 | |
Keywords | ||
Schiff base ligands Copper(II) complexes hydrazone Anticancer |
Rights and permissions | |
![]() |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Fekri R, Abdolmaleki A, Asadi A, Salehi M, Karimian A, Taghizadehmomen L, Raheem R, Karimian L. Anticancer Effects of Copper(II) Complexes Hydrazone −Based Schiff Base: A review. Basic Clin Cancer Res. 2022;13(2):143-155.