18FDG production in a PET imaging using a proton flux produced by D-D fusion reaction
Abstract
Fluorine 18-deoxyglucose (18FDG) is often used in Positron Emission Tomography (PET). PET imaging is one of the useful tool which is used to cancer detection and management. PET growth is limited due to problems that depend on the production of Fluorine-18.Imaging results are strongly dependent on the information of nuclear reaction cross section data. This study is done to calculate the stopping power, RCSDA, simulated and distributed absorbed dose of F-18, in water. In order to access these goals, we use the Geant4/Gate simulation and the Bethe-Bloch theory model. The results of this simulation and this theory model are in good agreement with each other .The main point of this paper is the presentation of a theoretical approach to the production of Fluorine-18 by using protons production through the main nuclear fusion reaction and the side fusion reaction uses helium-3 as a catalyzed.
1. Basu S. Fundamentals of PET and PET/CT imaging. Ann. N. Y. Acad. Sci. 2011; 1228: 1–18.
2. Fischer BM. PET/CT is a cost-effective tool against cancer: synergy supersedes singularity. Eur J Nucl Med Mol Imaging. 2016;43: 1749–1752.
3. Marcu LG, Moghaddasi L and Bezak E. Imaging of Tumor Characteristics and Molecular Pathways with PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol .2018; 102: 1165–1182.
4. Cherry SR. Total-body imaging: transforming the role of positron emission tomography. Sci Trans Med. 2017; 9: 381-389.
5. Oelfke U. Proton dose monitoring with PET: quantita¬tive studies in Lucite Phys Med Biol. 1996; 41: 177-186.
6. Parodi K, Enghardt W and Haberer T. In-beam PET measurements of β+ radioactivity induced by proton beams. Phys Med Biol. 2002; 47 :21-26.
7. Paans AMJ and Schippers JM. Proton Therapy in combination with PET as monitor: A feasibility study. IEEE Trans Nucl Sci. 1993; 40 :1041-1043.
8. Litzenberg D. On-line Monitoring and PET Imaging of the Positron-Emitting Activity Created in Tissue by Proton Radiotherapy Beams. Ph.D. Thesis, Univ. of Michigan. 1997.
9. Nakai S and Mima K, Reports on Progress in Physics. 2004; 67: 321–349.
10. Atzeni S and Meyer-Ter-Vehn J. The Physics of Iner¬tial Fusion, Oxford Science Publications. 2004.
11. Cañadas M, Arce P, and Rato Mendes P. Validation of a small‐animal pet simulation using gamos: A GEANT4‐based framework. Phys Med Biol. 2011;56: 273– 288 .
12. Assie K, Gardin I, Vera P and Buvat I . Validation of the Monte Carlo simulator GATE for Indium 111 im¬aging. Phys Med Biol. 2005; 50:3113–3125
13. Bethe H. Bremsformel für Elektronen relativistischer Geschwindigkeit. Zeitschrift für Physik. 1932; 76: 293–299.
14. Ziegler, J. F. Stopping of energetic light ions in ele¬mental matter. Journal of Applied Physics 1999; 85: 1249–1272.
15. Bloch F. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Annalen der Physik. 1933; 408:285–320.
16. Rohrlich F, Carlson BC. Positron–electron differenc¬es in energy loss and multiple scattering. Physical Re¬view. 1954; 93:38–44.
17. Tsoulfanidis N. Measurement and detection of ra¬diation. 2nd Edition. Taylor & Francis, Washington; 1995: 1–636.
18. Tanır G, Bölükdemir MH, Keleş S, Göker I. On the stopping power for low energy positrons. Chinese Journal of Physics. 2011; 50:1–9.
19. Gümüş H. New stopping power formula for interme¬diate energy electrons. Applied Radiation Isotopes. 2008; 66:1886–1890.
20. Gümüş H, Kabaday O, Tufan CM. Calculation of the stopping power for intermediate energy positrons. Chinese Journal of Physics. 2006; 44:290–296.
21. Krane K. Modern Physics. 2nd Edition. Department of Physics, Oregon University. John Wiley & sons Inc USA; 1996: 145.
22. Atoms JET. Radiation and Radiation Protec¬tion. 3rd Edition. Completely Revised and Enlarged Edition. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Germany; 2007: 606.
23. Koch HW, Motz JW. Bremsstrahlung cross section formulas and related data. Reviews of Modern Phys¬ics. 1959; 31:920–55.
24. Prestwich WV, Nunes J, Kwok CS. Beta dose point kernels for radionuclides of potential use in radio¬immunotherapy. Journal of Nuclear Medicine. 1989; 30:1036–46.
25. INTERNATIONAL ATOMIC ENERGY AGENCY, Cyclotron Produced Radionuclides: Guidance on Fa¬cility Design and Production of [18F]Fluorodeoxy¬glucose (FDG), 2012, VIENNA.
26. INTERNATIONAL ATOMIC ENERGY AGENCY, Cyclotron ProducedRadionuclides: Principles and Practice, Technical Re-ports Series , 2009,No. 465, IAEA, Vienna.
27. INTERNATIONAL ATOMIC ENERGY AGENCY, Cyclotron Produced Radionuclides: Physical Characteristics and Produc-tion Methods, Technical Reports Series , 2009, No. 468, IAEA, Vienna.
2. Fischer BM. PET/CT is a cost-effective tool against cancer: synergy supersedes singularity. Eur J Nucl Med Mol Imaging. 2016;43: 1749–1752.
3. Marcu LG, Moghaddasi L and Bezak E. Imaging of Tumor Characteristics and Molecular Pathways with PET: Developments Over the Last Decade Toward Personalized Cancer Therapy. Int J Radiat Oncol .2018; 102: 1165–1182.
4. Cherry SR. Total-body imaging: transforming the role of positron emission tomography. Sci Trans Med. 2017; 9: 381-389.
5. Oelfke U. Proton dose monitoring with PET: quantita¬tive studies in Lucite Phys Med Biol. 1996; 41: 177-186.
6. Parodi K, Enghardt W and Haberer T. In-beam PET measurements of β+ radioactivity induced by proton beams. Phys Med Biol. 2002; 47 :21-26.
7. Paans AMJ and Schippers JM. Proton Therapy in combination with PET as monitor: A feasibility study. IEEE Trans Nucl Sci. 1993; 40 :1041-1043.
8. Litzenberg D. On-line Monitoring and PET Imaging of the Positron-Emitting Activity Created in Tissue by Proton Radiotherapy Beams. Ph.D. Thesis, Univ. of Michigan. 1997.
9. Nakai S and Mima K, Reports on Progress in Physics. 2004; 67: 321–349.
10. Atzeni S and Meyer-Ter-Vehn J. The Physics of Iner¬tial Fusion, Oxford Science Publications. 2004.
11. Cañadas M, Arce P, and Rato Mendes P. Validation of a small‐animal pet simulation using gamos: A GEANT4‐based framework. Phys Med Biol. 2011;56: 273– 288 .
12. Assie K, Gardin I, Vera P and Buvat I . Validation of the Monte Carlo simulator GATE for Indium 111 im¬aging. Phys Med Biol. 2005; 50:3113–3125
13. Bethe H. Bremsformel für Elektronen relativistischer Geschwindigkeit. Zeitschrift für Physik. 1932; 76: 293–299.
14. Ziegler, J. F. Stopping of energetic light ions in ele¬mental matter. Journal of Applied Physics 1999; 85: 1249–1272.
15. Bloch F. Zur Bremsung rasch bewegter Teilchen beim Durchgang durch Materie. Annalen der Physik. 1933; 408:285–320.
16. Rohrlich F, Carlson BC. Positron–electron differenc¬es in energy loss and multiple scattering. Physical Re¬view. 1954; 93:38–44.
17. Tsoulfanidis N. Measurement and detection of ra¬diation. 2nd Edition. Taylor & Francis, Washington; 1995: 1–636.
18. Tanır G, Bölükdemir MH, Keleş S, Göker I. On the stopping power for low energy positrons. Chinese Journal of Physics. 2011; 50:1–9.
19. Gümüş H. New stopping power formula for interme¬diate energy electrons. Applied Radiation Isotopes. 2008; 66:1886–1890.
20. Gümüş H, Kabaday O, Tufan CM. Calculation of the stopping power for intermediate energy positrons. Chinese Journal of Physics. 2006; 44:290–296.
21. Krane K. Modern Physics. 2nd Edition. Department of Physics, Oregon University. John Wiley & sons Inc USA; 1996: 145.
22. Atoms JET. Radiation and Radiation Protec¬tion. 3rd Edition. Completely Revised and Enlarged Edition. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Germany; 2007: 606.
23. Koch HW, Motz JW. Bremsstrahlung cross section formulas and related data. Reviews of Modern Phys¬ics. 1959; 31:920–55.
24. Prestwich WV, Nunes J, Kwok CS. Beta dose point kernels for radionuclides of potential use in radio¬immunotherapy. Journal of Nuclear Medicine. 1989; 30:1036–46.
25. INTERNATIONAL ATOMIC ENERGY AGENCY, Cyclotron Produced Radionuclides: Guidance on Fa¬cility Design and Production of [18F]Fluorodeoxy¬glucose (FDG), 2012, VIENNA.
26. INTERNATIONAL ATOMIC ENERGY AGENCY, Cyclotron ProducedRadionuclides: Principles and Practice, Technical Re-ports Series , 2009,No. 465, IAEA, Vienna.
27. INTERNATIONAL ATOMIC ENERGY AGENCY, Cyclotron Produced Radionuclides: Physical Characteristics and Produc-tion Methods, Technical Reports Series , 2009, No. 468, IAEA, Vienna.
Files | ||
Issue | Vol 13 No 3 (2021) | |
Section | Original Articles | |
DOI | https://doi.org/10.18502/bccr.v13i3.11403 | |
Keywords | ||
Fluorine-18 fusion stopping power absorbed dose proton |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |
How to Cite
1.
Niknam N, Hosseinimotlagh SN, Parang Z. 18FDG production in a PET imaging using a proton flux produced by D-D fusion reaction. Basic Clin Cancer Res. 2022;13(3):210-224.