Reviews

MicroRNA Promoter Methylation in Colorectal Cancer

Abstract

Colorectal cancer (CRC) is one of the most common cancers worldwide. The beginning and progression of the disease are thought to be determined by combinations of epigenetic and genetic changes that trigger multistep programs of carcinogenesis. In colorectal cancer, epigenetic alterations, in particular promoter CpG island methylation, occur more commonly than genetic mutations. Hyper-methylation contributes to carcinogenesis via inducing transcriptional silencing or down-regulation of tumor suppressor genes.  DNA methylation alteration has a high potential for minimally invasive biomarker identification. Genome analysis has confirmed that microRNA expression is deregulated in most cancer types through several mechanisms, including failings in the microRNA biogenesis machinery. Moreover, microRNAs can be dysregulated by abnormal CpG methylation in cancer. Since it is believed that epigenetic changes occur in the early stages of the disease,  these changes can be used for the early detection of cancer. In this review, we intend to study the role of microRNA gene promoter methylation in colorectal cancer.
1. Shamsi MB, Firoz AS, Imam SN, Alzaman N, Samman MA. Epigenetics of human diseases and scope in future therapeutics. J Taibah Univ Med Sci. 2017;12(3):205-11.
2. Samadaian N, Modaresi MH, Mobasheri M, Ebrahim Zadeh Vesal R, Akrami SM. miRNA-21 expression analysis in 35 colorectal cancer. Tehran University Medical Journal TUMS Publications. 2014 Aug 15;72(5):301-6.
3. Soheilifar MH, Moshtaghian A, Maadi H, Izadi F, Saidijam M. BMI1 roles in cancer stem cells and its association with micrornas dysregulation in cancer: Emphasis on colorectal cancer. International Journal of Cancer Management. 2018. 11(9): p. e82926.
4. Chen H, Xu Z. Hypermethylation-Associated Silencing of miR-125a and miR-125b: A Potential Marker in Colorectal Cancer. Dis Markers. 2015;2015:345080.
5. Schetter AJ, Okayama H, Harris CC. The role of microRNAs in colorectal cancer. Cancer journal (Sudbury, Mass.). 2012 May;18(3):244-52.
6. Zhang G, Zhou H, Xiao H, Liu Z, Tian H, Zhou T. MicroRNA-92a functions as an oncogene in colorectal cancer by targeting PTEN. Digestive diseases and sciences. 2014 Jan 1;59(1):98-107.
7. Zhao L, Yu H, Yi S, Peng X, Su P, Xiao Z, Liu R, Tang A, Li X, Liu F, Shen S. The tumor suppressor miR-138-5p targets PD-L1 in colorectal cancer. Oncotarget. 2016 Jul 19;7(29):45370-45384.
8. Hanada T, Kobayashi T, Chinen T, Saeki K, Takaki H, Koga K, Minoda Y, Sanada T, Yoshioka T, Mimata H, Kato S. IFNγ-dependent, spontaneous development of colorectal carcinomas in SOCS1-deficient mice. Journal of Experimental Medicine. 2006 Jun 12;203(6):1391-7.
9. Akhtar-Zaidi B, Cowper-Sal R, Corradin O, Saiakhova A, Bartels CF, Balasubramanian D, Myeroff L, Lutterbaugh J, Jarrar A, Kalady MF, Willis J. Epigenomic enhancer profiling defines a signature of colon cancer. Science. 2012 May 11;336(6082):736-9.
10. Van Engeland M, Derks S, Smits KM, Meijer GA, Herman JG. Colorectal cancer epigenetics: complex simplicity. Journal of clinical oncology. 2011 Jan 10;29(10):1382-91.
11. Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis. 2010 Jan 1;31(1):27-36.
12. Ashktorab H, Daremipouran M, Goel A, Varma S, Leavitt R, Sun X, Brim H. DNA methylome profiling identifies novel methylated genes in African American patients with colorectal neoplasia. Epigenetics. 2014 Apr 17;9(4):503-12.
13. Ashktorab H, Rahi H, Wansley D, Varma S, Shokrani B, Lee E, Daremipouran M, Laiyemo A, Goel A, Carethers JM, Brim H. Toward a comprehensive and systematic methylome signature in colorectal cancers. Epigenetics. 2013 Aug 1;8(8):807-15.
14. Kondo Y, Issa JP. Epigenetic changes in colorectal cancer. Cancer and metastasis reviews. 2004 Jan 1;23(1-2):29-39.
15. Esteller M, Herman JG. Cancer as an epigenetic disease: DNA methylation and chromatin alterations in human tumours. The Journal of Pathology: A Journal of the Pathological Society of Great Britain and Ireland. 2002 Jan;196(1):1-7.
16. Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. JNCI: Journal of the National Cancer Institute. 2017 Aug 1;109(8).
17. Nour El Hoda SI, El Sheikh SA, Talaat SM, Salem EM. Mismatch repair proteins and microsatellite instability in colorectal carcinoma (MLH1, MSH2, MSH6 and PMS2): histopathological and immunohistochemical study. Open access Macedonian journal of medical sciences. 2017 Feb 15;5(1): 9-13.
18. Svrcek M, Buhard O, Colas C, Coulet F, Dumont S, Massaoudi I, Lamri A, Hamelin R, Cosnes J, Oliveira C, Seruca R. Methylation tolerance due to an O6-methylguanine DNA methyltransferase (MGMT) field defect in the colonic mucosa: an initiating step in the development of mismatch repair-deficient colorectal cancers. Gut. 2010 Nov 1;59(11):1516-26.
19. Wang Z, Li R, He Y, Huang S. Effects of secreted frizzled-related protein 1 on proliferation, migration, invasion, and apoptosis of colorectal cancer cells. Cancer cell international. 2018 Dec;18(1):48.
20. Maeda K, Kawakami K, Ishida Y, Ishiguro K, Omura K, Watanabe G. Hypermethylation of the CDKN2A gene in colorectal cancer is associated with shorter survival. Oncology reports. 2003 Jul 1;10(4):935-8.
21. Lin H, Zhang Y, Wang H, Xu D, Meng X, Shao Y, Lin C, Ye Y, Qian H, Wang S. Tissue inhibitor of metalloproteinases-3 transfer suppresses malignant behaviors of colorectal cancer cells. Cancer gene therapy. 2012 Dec;19(12):845-51.
22. Gilles C, Polette M, Mestdagt M, Nawrocki-Raby B, Ruggeri P, Birembaut P, Foidart JM. Transactivation of vimentin by β-catenin in human breast cancer cells. Cancer research. 2003 May 15;63(10):2658-64.
23. Mendez MG, Kojima SI, Goldman RD. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. The FASEB Journal. 2010 Jun;24(6):1838-51.
24. Wang Y, Chen PM, Liu RB. Advance in plasma SEPT9 gene methylation assay for colorectal cancer early detection. World journal of gastrointestinal oncology. 2018 Jan 15;10(1):15-22.
25. Kim SA, Inamura K, Yamauchi M, Nishihara R, Mima K, Sukawa Y, Li T, Yasunari M, Morikawa T, Fitzgerald KC, Fuchs CS. Loss of CDH1 (E-cadherin) expression is associated with infiltrative tumour growth and lymph node metastasis. British journal of cancer. 2016 Jan;114(2):199-206.
26. Sandhu S, Wu X, Nabi Z, Rastegar M, Kung S, Mai S, Ding H. Loss of HLTF function promotes intestinal carcinogenesis. Molecular cancer. 2012 Dec;11(1):18.
27. Yao Q, Chen Y, Zhou X. The roles of microRNAs in epigenetic regulation. Current opinion in chemical biology. 2019 Aug 1;51:11-7.
28. Peng Y, Croce CM. The role of MicroRNAs in human cancer. Signal transduction and targeted therapy. 2016 Jan 28;1:15004.
29. Lovat F, Valeri N, Croce CM. MicroRNAs in the pathogenesis of cancer. InSeminars in oncology 2011 Dec; 38(6): 724-33.
30. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annual Review of Pathology: Mechanisms of Disease. 2014 Jan 24;9:287-314.
31. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annual review of medicine. 2009 Feb 18;60:167-79.
32. Chen J, Chen Y, Chen Z. MiR-125a/b regulates the activation of cancer stem cells in paclitaxel-resistant colon cancer. Cancer investigation. 2013 Jan 25;31(1):17-23.
33. Chen H, Xu Z. Hypermethylation-associated silencing of miR-125a and miR-125b: a potential marker in colorectal cancer. Disease markers. 2015;2015. p. 345080.
34. Zheng YB, Luo HP, Shi Q, Hao ZN, Ding Y, Wang QS, Li SB, Xiao GC, Tong SL. miR-132 inhibits colorectal cancer invasion and metastasis via directly targeting ZEB2. World journal of gastroenterology: WJG. 2014 Jun 7;20(21):6515-6522.
35. Qin J, Ke J, Xu J, Wang F, Zhou Y, Jiang Y, Wang Z. Downregulation of microRNA-132 by DNA hypermethylation is associated with cell invasion in colorectal cancer. OncoTargets and therapy. 2015;8:3639-48.
36. Wang X, Bu J, Liu X, Wang W, Mai W, Lv B, Zou J, Mo X, Li X, Wang J, Niu B. miR-133b suppresses metastasis by targeting HOXA9 in human colorectal cancer. Oncotarget. 2017 Sep 8;8(38):63935-63948.
37. Lv LV, Zhou J, Lin C, Hu G, Yi LU, Du J, Gao K, Li X. DNA methylation is involved in the aberrant expression of miR-133b in colorectal cancer cells. Oncology letters. 2015 Aug 1;10(2):907-12.
38. Zhang H, Li Y, Huang Q, Ren X, Hu H, Sheng H, Lai M. MiR-148a promotes apoptosis by targeting Bcl-2 in colorectal cancer. Cell death and differentiation. 2011 Nov;18(11):1702-10.
39. Takahashi M, Cuatrecasas M, Balaguer F, Hur K, Toiyama Y, Castells A, Boland CR, Goel A. The clinical significance of MiR-148a as a predictive biomarker in patients with advanced colorectal cancer. PloS one. 2012 Oct 3;7(10):e46684.
40. Chen E, Li Q, Wang H, Zhang P, Zhao X, Yang F, Yang J. MiR-32 promotes tumorigenesis of colorectal cancer by targeting BMP5. Biomedicine & Pharmacotherapy. 2018 Oct 1;106:1046-51.
41. Wu W, Ye S, Tan W, Zhou Y, Quan J. Analysis of promoter methylation and epigenetic regulation of miR 32 in colorectal cancer cells. Experimental and therapeutic medicine. 2019 Apr 1;17(4):3209-14.
42. Zhang Y, Wang X, Xu B, Wang B, Wang Z, Liang Y, Zhou J, Hu J, Jiang B. Epigenetic silencing of miR-126 contributes to tumor invasion and angiogenesis in colorectal cancer. Oncology reports. 2013 Oct 1;30(4):1976-84.
43. Zhang Y, Fu J, Zhang Z, Qin H. miR-486-5p regulates the migration and invasion of colorectal cancer cells through targeting PIK3R1. Oncology letters. 2018 May 1;15(5):7243-8.
44. Liu X, Chen X, Zeng K, Xu M, He B, Pan Y, Sun H, Pan B, Xu X, Xu T, Hu X. DNA-methylation-mediated silencing of miR-486-5p promotes colorectal cancer proliferation and migration through activation of PLAGL2/IGF2/β-catenin signal pathways. Cell death & disease. 2018 Oct 10;9(10):1037.
45. Zhang Q, Wang J, Li N, Liu Z, Chen Z, Li Z, Lai Y, Shen L, Gao J. miR-34a increases the sensitivity of colorectal cancer cells to 5-fluorouracil in vitro and in vivo. American journal of cancer research. 2018;8(2):280-290.
46. Jiang L, Hermeking H. miR-34a and miR-34b/c suppress intestinal tumorigenesis. Cancer research. 2017 May 15;77(10):2746-58.
47. Jun HH, Kwack K, Lee KH, Kim JO, Park HS, Ryu CS, Lee JY, Ko D, Kim JW, Kim NK. Association between TP53 genetic polymorphisms and the methylation and expression of miR 34a, 34b/c in colorectal cancer tissues. Oncology letters. 2019 May 1;17(5):4726-34.
48. Shi L, Li X, Wu Z, Li X, Nie J, Guo M, Mei Q, Han W. DNA methylation-mediated repression of miR-181a/135a/302c expression promotes the microsatellite-unstable colorectal cancer development and 5-FU resistance via targeting PLAG1. Journal of Genetics and Genomics. 2018 Apr 20;45(4):205-14.
Files
IssueVol 11 No 3 (2019) QRcode
SectionReviews
DOI https://doi.org/10.18502/bccr.v11i3.5720
Keywords
Colorectal Neoplasm microRNA epigenetics DNA hypermethylation BCCR 2019;

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Asefi M, Rezvani N, Soheilifar MH, Saidijam M, Mahdavinezhad A. MicroRNA Promoter Methylation in Colorectal Cancer. Basic Clin Cancer Res. 2019;11(3):135-141.