A Mini-Review of Magnetic Nanoparticles: Applications in Biomedicine
Abstract
Recent advances in nanotechnology have rapidly developed new therapeutic and diagnostic concepts in all aspects of medicine. Magnetic nanoparticles (MNPs) can be simultaneously functionalized and guided by a magnetic field, thus providing promising tools for several biomedical applications. MNPs contrast agents at low concentrations offer the potential to significantly improve existing methods of cancer diagnosis and treatment. In addition to imaging, MNPs can be designed so that they can selectively accumulate in cancer cells and providing “targeted” treatments that may not be possible with conventional techniques. To this end, MNPs need to have a special surface coating, which causes these materials to be non-toxic, biocompatible and targetable. The treatment of cancer by hyperthermia method could be more effective by using MNPs-based drugs, because they can manipulated under an external magnetic field and increase the efficiency of treatment due to the accumulation of these particles in tumor targets. Therefore development of MNPs could be effective for theragnostics application because they can facilitate the imaging and drug delivery and also could be useful in disease therapy. This Review provides a brief introduction to some of potential applications of magnetic nanoparticles in biomedicine especially in the detection, diagnosis and treatment of malignant tumors.Indira T, Lakshmi P. Magnetic nanoparticles-A review. Int J Pharm Sci Nanotechnol. 2010; 3(3): 1035-42.
Pankhurst Q A, Connolly J, Jones S, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D: Appl Phys. 2003; 36(13): R167-R181.
Gloria A, Russo T, D'Amora U, Zeppetelli S, D'Alessandro T, Sandri M, et al. Magnetic poly (epsilon-caprolactone) /iron-doped hydroxyapatite nanocomposite substrates for advanced bone tissue engineering. J R Soc Interface. 2013; 10(80): 20120833. doi: 10.1098/rsif.2012.0833.
.4. Gupta A K, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005; 26(18): 3995-4021.
.5. Xie J, Huang J, Li X, Sun S, Chen X. Iron oxide nanoparticle platform for biomedical applications. Curr Med Chem. 2009; 16(10): 1278-94.
.6. Weissleder R, Elizondo G, Wittenberg J, Rabito C, Bengele H, Josephson L. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology. 1990; 175(2): 489-93.
.7. Wang Y-X J, Hussain S M, Krestin G P. Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol. 2001; 11(11): 2319-31.
Shimizu K, Ito A, Lee J K, Yoshida T, Miwa K, Ishiguro H, et al. Construction of multi-layered cardiomyocyte sheets using magnetite nanoparticles and magnetic force. Biotechnol Bioeng. 2007; 96(4): 803-09.
Dobson J. Magnetic nanoparticles for drug delivery. Drug Develop Res. 2006; 67(1): 55-60.
Jordan A, Wust P, Fahling H, John W, Hinz A, Felix R. Inductive heating of ferrimagnetic particles and magnetic fluids: physical evaluation of their potential for hyperthermia. Int J Hyperther. 1993; 9(1): 51-68.
Madani S Y, Naderi N, Dissanayake O, Tan A, Seifalian AM. A new era of cancer treatment: carbon nanotubes as drug delivery tools. Int J Nanomedicine. 2011; 6: 2963-79.
Vogel V, Gohy J F, Lohmeijer B G, Van Den Broek J A, Haase W, Schubert U S, et al. Metallo‐supramolecular micelles: Studies by analytical ultracentrifugation and electron microscopy. J Polym Sci A Polym Chem. 2003; 41(20): 3159-68.
Berne BJ, Pecora R. Dynamic light scattering: with applications to chemistry, biology, and physics: Courier Corporation; 2000.
Howard AG. Undergraduate instrumental analysis: J.W. Robinson, 5th edn., Marcel Dekker, New York, 1994; (ISBN 0-8247-9215-7) 872 pp.
Lodhia J, Mandarano G, Ferris N, Eu P, Cowell S. Development and use of iron oxide nanoparticles (Part 1): Synthesis of iron oxide nanoparticles for MRI. Biomed Imag Interv J. 2010; 6(2): e12.
Itoh H, Sugimoto T. Systematic control of size, shape, structure, and magnetic properties of uniform magnetite and maghemite particles. J Colloid Interface Sci. 2003; 265(2): 283-95.
Wu J-H, Ko S P, Liu H-L, Kim S, Ju J-S, Kim Y K. Sub 5 nm magnetite nanoparticles: Synthesis, microstructure, and magnetic properties. Mater Lett. 2007; 61(14): 3124-9.
Chen F, Gao Q, Hong G, Ni J. Synthesis and characterization of magnetite dodecahedron nanostructure by hydrothermal method. J Magn Magn Mater. 2008; 320(11): 1775-80.
Marques R F, Garcia C, Lecante P, Ribeiro S J, Noé L, Silva N J, et al. Electro-precipitation of Fe3O4 nanoparticles in ethanol. J Magn Magn Mater. 2008; 320(19): 2311-5.
Dang F, Enomoto N, Hojo J, Enpuku K. Sonochemical synthesis of monodispersed magnetite nanoparticles by using an ethanol–water mixed solvent. Ultrason Sonochem. 2009; 16(5): 649-54.
Sun C, Lee J S, Zhang M. Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev. 2008; 60(11): 1252-65.
Fussel F. Dissertation, Aachen: Rheinisch - Westfälische Technische Hochschule Aachen. 1997.
Chin S F, Makha M, Raston C L, Saunders M. Magnetite ferrofluids stabilized by sulfonato-calixarenes. Chem Commun. 2007; (19): 1948-50.
Choi J, Kim J C, Lee Y B, Kim I S, Park Y K, Hur N H. Fabrication of silica-coated magnetic nanoparticles with highly photoluminescent lanthanide probes. Chem Commun. 2007; (16): 1644-6.
Shamim N, Hong L, Hidajat K, Uddin M S. Thermosensitive polymer (N-isopropylacrylamide) coated nanomagnetic particles: preparation and characterization. Colloids Surf, B. 2007; 55(1): 51-8.
Reddy L H, Arias J L, Nicolas J, Couvreur P. Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem rev. 2012; 112(11): 5818-78.
Gupta A K, Naregalkar R R, Vaidya V D, Gupta M. Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. Nanomedicine (London, England). 2007; 2(1): 23-39.
Wan S, Huang J, Yan H, Liu K. Size-controlled preparation of magnetite nanoparticles in the presence of graft copolymers. J Mater Chem. 2006; 16(3): 298-303.
Na H B, Song I C, Hyeon T. Inorganic nanoparticles for MRI contrast agents. Adv Mater. 2009; 21(21): 2133-48.
Ozdemir V, Williams-Jones B, Glatt S J, Tsuang M T, Lohr J B, Reist C. Shifting emphasis from pharmacogenomics to theragnostics. Nat Biotechnol. 2006; 24(8): 942-6.
Liu Z, Lammers T, Ehling J, Fokong S, Bornemann J, Kiessling F, et al. Iron oxide nanoparticle-containing microbubble composites as contrast agents for MR and ultrasound dual-modality imaging. Biomaterials. 2011; 32(26): 6155-63.
Ling Y, Wei K, Luo Y, Gao X, Zhong S. Dual docetaxel/superparamagnetic iron oxide loaded nanoparticles for both targeting magnetic resonance imaging and cancer therapy. Biomaterials. 2011; 32(29): 7139-50.
Bulte J W, Brooks R A, Moskowitz B M, Bryant L H Jr, Frank J A. Relaxometry and magnetometry of the MR contrast agent MION-46L. Magn Reson Med. 1999; 42(2): 379-84.
Gamarra L, Brito G, Pontuschka W, Amaro E, Parma A, Goya G. Biocompatible superparamagnetic iron oxide nanoparticles used for contrast agents: a structural and magnetic study. J Magn Magn Mater. 2005; 289: 439-41.
Sattarahmady N, Zare T, Mehdizadeh A R, Azarpira N, Heidari M, Lotfi M, et al. Dextrin-coated zinc Substituted cobalt-ferrite nanoparticles as an MRI contrast agent: In vitro and in vivo imaging studies. Colloids Surf, B. 2015; 129: 15-20.
Zare T, Lotfi M, Heli H, Azarpira N, Mehdizadeh A R, Sattarahmady N, et al. Synthesis, characterization, in vitro and in vivo studies of dextrin-coated zinc-iron ferrite nanoparticles (Zn0.5Fe0.5Fe2O4) as contrast agent in MRI. Appl Phys A. 2015; 120: 1189–96.
Wei L, Li S, Yang J, Ye Y, Zou J, Wang L, et al. Protein-based MRI contrast agents for molecular imaging of prostate cancer. Mol Imaging Biol. 2011; 13(3): 416-23.
Clement O, Siauve N, Cuenod C A, Frija G. Liver imaging with ferumoxides (Feridex): fundamentals, controversies, and practical aspects. Top Magn Reson Imaging. 1998; 9(3): 167-82.
Reimer P, Marx C, Rummeny E J, Müller M, Lentschig M, Balzer T, et al. SPIO‐enhanced 2D‐TOF MR angiography of the portal venous system: Results of an intraindividual comparison. J Magn Reson Imaging. 1997; 7(6): 945-9.
Weissleder R, Elizondo G, Wittenberg J, Lee A S, Josephson L, Brady T J. Ultrasmall superparamagnetic iron oxide: an intravenous contrast agent for assessing lymph nodes with MR imaging. Radiology. 1990; 175(2): 494-8.
Wacker F K, Reither K, Ebert W, Wendt M, Lewin J S, Wolf K J. MR image-guided endovascular procedures with the ultrasmall superparamagnetic iron oxide SH U 555 C as an intravascular contrast agent: study in pigs. Radiology. 2003; 226(2): 459-64.
Mulder W J, Strijkers G J, van Tilborg G A, Griffioen A W, Nicolay K. Lipid‐based nanoparticles for contrast‐enhanced MRI and molecular imaging. NMR Biomed. 2006; 19(1): 142-64.
Bulte J W, Kraitchman D L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed. 2004; 17(7): 484-99.
Weissleder R, Tung C H, Mahmood U, Bogdanov A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol. 1999; 17(4): 375-8.
Schellenberger E A, Sosnovik D, Weissleder R, Josephson L. Magneto/optical annexin V, a multimodal protein. Bioconjugate chem. 2004; 15(5): 1062-7.
Massoud T F, Gambhir S S. Integrating noninvasive molecular imaging into molecular medicine: an evolving paradigm. Trends Mol Med. 2007; 13(5): 183-91.
de Vries I J, Lesterhuis W J, Barentsz J O, Verdijk P, van Krieken J H, Boerman O C, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005; 23(11): 1407-13.
Medarova Z, Evgenov N V, Dai G, Bonner-Weir S, Moore A. In vivo multimodal imaging of transplanted pancreatic islets. Nat protoc. 2006; 1(1): 429-35.
Bull E, Madani S Y, Sheth R, Seifalian A, Green M, Seifalian A M. Stem cell tracking using iron oxide nanoparticles. Int J Nanomedicine. 2014; 9: 1641-53.
Franckena M, Fatehi D, de Bruijne M, Canters R A, van Norden Y, Mens J W, et al. Hyperthermia dose-effect relationship in 420 patients with cervical cancer treated with combined radiotherapy and hyperthermia. Eur J Cancer. 2009; 45(11): 1969-78.
Ikeda N, Hayashida O, Kameda H, Ito H, Matsuda T. Experimental study on thermal damage to dog normal brain. Int J Hyperthermia. 1994; 10(4): 553-61.
Laurent S, Dutz S, Häfeli U O, Mahmoudi M. Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles. Adv Colloid Interface Sci. 2011; 166(1): 8-23.
Neuberger T, Schöpf B, Hofmann H, Hofmann M, Von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005; 293(1): 483-96.
Gilchrist R, Medal R, Shorey W D, Hanselman R C, Parrott J C, Taylor C B. Selective inductive heating of lymph nodes. Ann Surg. 1957; 146(4): 596.
Ito A, Shinkai M, Honda H, Kobayashi T. Medical application of functionalized magnetic nanoparticles. J Biosci Bioeng. 2005; 100(1): 1-11.
Bornstein B A, Zouranjian P S, Hansen J L, Fraser S M, Gelwan L A, Teicher B A, et al. Local hyperthermia, radiation therapy, and chemotherapy in patients with local-regional recurrence of breast carcinoma. Int J Radiat Oncol. 1993; 25(1): 79-85.
Bregya A, Kohlera A, Steitzb B, Petri-Finkb A, Bognid S, Alfieria A, et al. Electromagnetic tissue fusion using superparamagnetic iron oxide nanoparticles: First experience with rabbit aorta. The Open Surgery Journal. 2008; 2 (LTP-ARTICLE-2009-005): 3-8.
10; 118(1378): 391-401.
Rosensweig R E. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002; 252: 370-4.
Kumar C S, Mohammad F. Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev. 2011; 63(9): 789-808.
Hergt R, Andra W, d'Ambly C G, Hilger I, W A Kaiser, Richter U, et al. Physical limits of hyperthermia using magnetite fine particles. Magnetics, IEEE Transactions on. 1998; 34(5): 3745-54.
Ondeck C, Habib A, Ohodnicki P, Miller K, Sawyer C, Chaudhary P, et al. Theory of magnetic fluid heating with an alternating magnetic field with temperature dependent materials properties for self-regulated heating. J Appl Phys. 2009; 105(7): 07B324.
Ito A, Tanaka K, Kondo K, Shinkai M, Honda H, Matsumoto K, et al. Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer sci. 2003; 94(3): 308-13.
Ito A, Tanaka K, Honda H, Abe S, Yamaguchi H, Kobayashi T. Complete regression of mouse mammary carcinoma with a size greater than 15 mm by frequent repeated hyperthermia using magnetite nanoparticles. J Biosci Bioeng. 2003; 96(4): 364-9.
Kawai N, Ito A, Nakahara Y, Futakuchi M, Shirai T, Honda H, et al. Anticancer effect of hyperthermia on prostate cancer mediated by magnetite cationic liposomes and immune‐response induction in transplanted syngeneic rats. Prostate. 2005; 64(4): 373-81.
Tietze R, Lyer S, Dürr S, Alexiou C. Nanoparticles for cancer therapy using magnetic forces. Nanomedicine. 2012; 7(3): 447-57.
Dorniani D, Hussein M Z B, Kura A U, Fakurazi S, Shaari A H, Ahmad Z. Preparation of Fe3O4 magnetic nanoparticles coated with gallic acid for drug delivery. Int J Nanomedicine. 2012; 7: 5745.
Simsek E, Kilic M A. Magic ferritin: A novel chemotherapeutic encapsulation bullet. J Magn Magn Mater. 2005; 293(1): 509-13.
Widder K J, Senyei A E, Scarpelli D G. Magnetic microspheres: a model system for site specific drug delivery in vivo. Exp Biol Med. 1978; 158(2): 141-6.
Widder K J, Morris R M, Poore G A, Howard D P, Senyei A E. Selective targeting of magnetic albumin microspheres containing low-dose doxorubicin: total remission in Yoshida sarcoma-bearing rats. Eur J Cancer Clin Oncol. 1983; 19(1): 135-9.
Davis S. Biomedical applications of nanotechnology-implications for drug targeting and gene therapy. Trends Biotechnol. 1997; 15(6): 217-24.
Davis S S, Illum L. Review: colloidal carriers and drug targeting. Acta Pharm Technol. 1986; 32: 4-9.
Lübbe A S, Bergemann C, Brock J, McClure D G. Physiological aspects in magnetic drug-targeting. J Magn Magn Mater. 1999; 194(1): 149-55.
Duncan R, Vicent M J, Greco F, Nicholson R I. Polymer-drug conjugates: towards a novel approach for the treatment of endrocine-related cancer. Endocr Relat Cancer. 2005; (Suppl): 189-99.
Sensenig R, Sapir Y, MacDonald C, Cohen S, Polyak B. Magnetic nanoparticle-based approaches to locally target therapy and enhance tissue regeneration in vivo. Nanomedicine. 2012; 7(9): 1425-42.
Gloria A, De Santis R, Ambrosio L. Polymer-based composite scaffolds for tissue engineering. J Appl Biomater Biomech. 2009; 8(2): 57-67.
Chapekar MS. Tissue engineering: challenges and opportunities. J Biomed Mater Res. 2000; 53(6): 617-20.
Yuet K P, Hwang D K, Haghgooie R, Doyle PS. Multifunctional superparamagnetic Janus particles. Langmuir. 2010; 26(6): 4281-7.
Guillotin B, Guillemot F. Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol. 2011; 29(4): 183-90.
Di Corato R, Gazeau F, Le Visage C, Fayol D, Levitz P, Lux F, et al. High-resolution cellular MRI: gadolinium and iron oxide nanoparticles for in-depth dual-cell imaging of engineered tissue constructs. ACS nano. 2013; 7(9): 7500-12.
Harrington J K, Chahboune H, Criscione J M, Li A Y, Hibino N, Yi T, et al. Determining the fate of seeded cells in venous tissue-engineered vascular grafts using serial MRI. FASEB J. 2011; 25(12): 4150-61.
Na H B, Lee J H, An K, Park Y I, Park M, Lee I S, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed Engl. 2007; 46(28): 5397-401.
Fu A, Wilson R J, Smith B R, Mullenix J, Earhart C, Akin D, Guccione S, et al. Fluorescent Magnetic Nanoparticles for Magnetically Enhanced Cancer Imaging and Targeting in Living Subjects. ACS Nano. 2012; 6(8): 6862-9.
Yallapu M M, Foy S P, Jain T K., Labhasetwar V. PEG-functionalized magnetic nanoparticles for drug delivery and magnetic resonance imaging applications. Pharm.res. 2010; 27 (11): 2283-95.
Maeng J H, Lee D H, Jung K H, Bae Y H, Park I S, Jeong S, et al. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials. 2010; 31(18): 4995-5006.
Gobbo O L, Sjaastad K, Radomski M W, Volkov Y, Prina-Mello A. Magnetic Nanoparticles in Cancer Theranostics. Theranostics. 20155; (11): 1249-63.
Cherukuri P, Glazer E S, Curley S A. Targeted hyperthermia using metal nanoparticles. Adv. Drug Delivery Rev. 2010; 62 (3): 339-345.
Hervault A, Thanh N T. Magnetic nanoparticle-based therapeutic agents for thermo-chemotherapy treatment of cancer. Nanoscale. 2014; 6(20): 11553-73.
Lu Z, Prouty M D, Guo Z, Golub V O, Kumar C S, Lvov Y M. Magnetic switch of permeability for polyelectrolyte microcapsules embedded with Co@ Au nanoparticles. Langmuir. 2005; 21(5): 2042-50.
Xie H Y, Zuo C, Liu Y, Zhang Z L, Pang DbW, Li X L, et al. Cell‐Targeting Multifunctional Nanospheres with both Fluorescence and Magnetism. Small. 2005; 1(5): 506-9.
Gu H, Xu K, Xu C, Xu B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem Commun. 2006; (9): 941-9.
Chen F, Shi R, Xue Y, Chen L, Wan Q-H. Templated synthesis of monodisperse mesoporous maghemite/silica microspheres for magnetic separation of genomic DNA. J Magn Magn Mater. 2010; 322(16): 2439-45.
Files | ||
Issue | Vol 7 No 4 (2015) | |
Section | Mini-Reviews | |
Keywords | ||
Magnetic Nanoparticles MRI Drug Delivery Hyperthermia Cancer |
Rights and permissions | |
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. |