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A B S T R A C T
Lung cancer remains a major public health concern and a leading cause of cancer-re-
lated deaths worldwide. Despite its prevalence, existing diagnostic approaches for early 
detection face significant challenges, including limited clinical resources and insuffi-
cient screening techniques. As a result, many cases are diagnosed at advanced stages, 
delaying critical treatment. Advances in omics technologies—such as metabolomics, 
proteomics, and genomics—have shown promise in improving early lung cancer de-
tection. Metabolomics, in particular, provides a detailed analysis of cellular and tissue 
metabolism, offering valuable insights into disease mechanisms. By examining endog-
enous metabolites in biological systems, metabolomics has demonstrated strong poten-
tial for early cancer detection and personalized therapy. In this study, we conducted an 
extensive review of online metabolomic databases, including the Metabolomics Work-
bench, to identify critical metabolites associated with various forms of lung cancer. Ad-
ditionally, using network analysis tools like Metagenes, we established links between 
metabolomic genes and 43 genes involved in lung cancer progression. Our integrated 
analysis reveals a comprehensive metabolic and molecular profile of lung cancer, high-
lighting 10 key metabolic pathways—particularly amino acid metabolism—that play 
a role in disease development. These findings contribute to a deeper understanding of 
lung cancer biology and may guide future research and clinical strategies for improved 
diagnosis and treatment.
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Lung cancer is a significant global health concern, 
with approximately 2.3 million new cases and 1.7 
million deaths reported in 2020 [1]. The delayed 
diagnosis of lung cancer has been identified as a major 
contributor to the high mortality rate, emphasizing 
the critical need for techniques that enable early 
detection [2]. Metabolomic profiling, which explores 
the molecular invasion at various levels such as the 
transcriptome, proteome, metabolome, genome, and 
epigenome, has emerged as a promising approach to 
understanding the pathogenesis of diseases, including 
lung cancer [3]. Metabolites have been recognized 
to play a substantial role in the development of 
cancer. Variations in metabolite concentrations in 
body fluids have shown potential as biomarkers 
for various diseases, including lung cancer [4]. The 
existing literature highlights the growing interest in 
the use of metabolomics for studying lung cancer 
and the identification of potential biomarkers and 
related pathways [5, 6]. However, further research 
and validation are necessary to establish the utility 
of metabolomic profiling in the diagnosis of lung 
cancer. Recent studies have identified specific 
metabolites such as palmitic acid, heptadecanoic 
acid, 4-oxoproline, tridecanoic acid, and ornithine 
that are considered promising biomarkers for the 
diagnosis and prognosis of lung cancer [7]. These 
findings underscore the potential of metabolomic 
profiling as a tool for improving the diagnosis of lung 
cancer. In addition, targeted metabolomic profiling of 
plasma samples from individuals with non-small cell 
lung cancer (NSCLC) has been conducted to identify 
specific biomarkers [8]. Bioinformatics approaches are 
required to manage, integrate, and analyze large-scale 
data and generate network information from various 
omics platforms [9] to achieve precision oncology. The 
use of bioinformatics in lung cancer research offers 
several benefits, including the development of new 
treatment and diagnostic methods, individualized 
treatment improvements, and the identification of 
potential biomarkers. The objective of this study 
is to present a metabolomic profile for lung cancer 
diagnosis through the integration of data from 
multiple databases and identifying related metabolite 
genes that play a significant role in pathway analysis 
and genomics.

Methods:
1. Metabolomics
Metabolomics datasets search. To identify appropriate 
metabolomics profiles within Mass Spectrometry 
(MS) datasets, a search was performed in the 
Metabolomics Workbench database (https://www.
metabolomicsworkbench.org). 
Differential metabolite analyses (DMA). The 
differential metabolite analyses (DMAs) were 
performed utilizing the web-based tools, Volcano plot 
and Orthogonal Partial Least Squares Discriminant 
Analysis (OPLS-DA), available in the Metabolomics 
Workbench database to compare two sample selected 
groups. A cutoff threshold of p value > 0.2 was applied 
to identify metabolites that exhibited significant 
differences. 
Overlapped DMA identification. 
A Venn diagram creator tool provided by the 
Bioinformatics & Evolutionary Genomics source 
was utilized (http://bioinformatics.psb.ugent.
be/webtools/Venn/) to identify the overlapping 
metabolomes across multiple datasets. Metabolomes 
that are present in at least five datasets selected for 
further analysis to ensure comprehensive coverage 
of metabolomes and avoid overlooking critical 
metabolomes that might not exhibit differences in 
individual studies for various reasons. This approach 
aimed to capture a broader spectrum of metabolomic 
information and minimize the possibility of excluding 
important metabolites.
Metabolome-Gene analysis. MetaBridge database 
[10] was employed to ascertain the genes linked to 
the identified metabolites. MetaBridge utilizes Kyoto 
Encyclopedia of Genes and Genomes (KEGG) [11] 
and MetaCyc [12] to identify the pertinent genes and 
pathways associated with the metabolites. Obtained 
results of KEGG and MetaCyc databases integrated 
with the OPLS-DA analysis using a Venn diagram. 
2. Genomics
Microarray dataset search.
Appropriate gene expression profiles within microarray 
datasets were identified using an extensive literature 
search with keywords such as “Computational 
Biology,” “Gene Expression Profiling,” and “Lung 
Neoplasms”. To ensure data integrity and avoid 
duplication, redundant datasets were subsequently 
removed, resulting in a refined collection of datasets 
for further analysis.
Differentially expressed genes (DEGs) detection. The 
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differentially expressed genes (DEGs) were determined 
using the online tool GEO2R (https://www.ncbi.nlm.
nih.gov/geo/geo2r) available in the Gene Expression 
Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/geo). This tool utilizes the GEO query and 
Limma R packages from the Bioconductor project to 
compare two sample groups within a GEO dataset. 
Prior to analysis, the gene expression data underwent 
normalization using the RMA algorithm. To mitigate 
false-positive and false-negative results, as well as 
account for variations across microarray platforms, 
the gene expression profiles of the lung cancer groups 
were individually compared to the normal groups or 
normal adjacent tissue groups within each dataset. 
A log2FC (RMA signal intensity) of ≥0 or ≤0 and 
an adjusted p-value > 0.05 (Benjamini & Hochberg 
correction) were set as thresholds to identify 
statistically significant DEGs. 
3. Integrated transcriptomics
Overlapped Gene identification. Overlapped genes 
derived from metabolomics analysis (Metabolomics 
Workbench datasets) and genomic analysis (GEO 
datasets) were discovered utilizing the Venny diagram.
Gene Ontology (GO) and Pathway Enrichment 
Analysis. The EnrichR platform (https://maayanlab.
cloud/Enrichr), which is used for analysis, utilizes 
the KEGG databases (https://www.genome.jp/kegg), 
which contain genomic information and biological 
pathways, for analysis. EnrichR offers multiple tools 
to investigate diverse gene functions. A significance 
threshold of P-value < 0.05 was applied for statistical 
analysis. Uniform Manifold Approximation and 
Projection (UMAP) analysis was performed to cluster 
the more similar gene sets closer. GO is employed to 
identify and characterize genes and proteins, enabling 
the exploration of the underlying biological properties 
within the chip database.
Protein-Protein Interaction (PPI) Networks 
Functional Enrichment Analysis. To construct the 
protein-protein interaction (PPI) network for the 
dysregulated genes shared among the datasets, the 
STRING database (https://string-db.org/) was utilized 
with default parameters. The generated network was 
subsequently visualized using Cytoscape software. 
Within the PPI network, the degree of a node denoted 
the number of interactions it had with other nodes. 
Co-expression scores based on RNA expression 
patterns were provided using ProteomeHD [13].

Results:
Study Workflow and Dataset Selection
The study workflow is illustrated in Figure 1. Out of 
20 initially considered datasets, 8 met the inclusion 
criteria, which required MS-based metabolomic 
profiling of pathologically confirmed lung cancer 
subtypes in human subjects. Studies using cell lines 
or animal models were excluded (Supplementary 
Table S1).

Identification of Significantly Altered Metabolites
Differential metabolomics analysis (DMA) revealed 
251 metabolites with significant changes between 
tumor and non-tumor samples via OPLS-DA 
(Supplementary Table S2) and 225 metabolites 
via Volcano analysis (Supplementary Table S3). 
Integration across datasets identified 6 overlapping 
metabolites from OPLS-DA and 13 from Volcano plots 
consistently altered in ≥5 studies (Supplementary 
Table S4).
Gene-Metabolite Integration Analysis Using 
MetaBridge and Venny
MetaBridge database analysis mapped metabolites 
from OPLS-DA and Volcano analyses to their 
corresponding genes (Supplementary Tables S5 and 
S6). Venny analysis identified 35 overlapping genes 
shared between the KEGG and MetaCyc databases 
(Figure 2; Supplementary Table S7).

Identification of Differentially Expressed Genes 
(DEGs) via GEO Database Screening
Analysis of 20 GEO datasets (Supplementary Table 
S8) using GEO2R (adjusted P < 0.05, |log2FC| > 0) 
identified 30 DEGs in lung cancer vs. normal groups 
(Supplementary Tables S9–S10) and 40 DEGs in 
tumor vs. adjacent normal tissue (Supplementary 
Tables S11–S12).

Potential biomarker analysis
We identified 43 overlapping genes between 
metabolite-related genes and DEGs obtained from the 
GEO database (Supplementary 1, Table S4). EnrichR 
analysis revealed enrichment of 35 pathways (P value 
< 0.05) associated with the interaction networks 
of the overlapping genes (Supplementary 1 Table 
S5), suggesting that amino acid metabolism plays a 
critical role in lung cancer pathophysiology. (Figure 
3-B) Among these pathways, alanine, aspartate, and 
glutamate metabolism pathways showed the highest 
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Figure 1: An overview of study workflow for identifying
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significance in the volcano plot with an odds ratio 
(OR) of 362.82, followed by Cysteine and methionine 
metabolism with an OR of 111.17. (Figure 4-B) 
The Manhattan plot also confirmed these findings. 
(Figure 3-A) Additionally, the UMAP plot revealed 
11 clusters of related gene pathways. (Figure 4-A) GO 
term analysis categorized the DEGs into biological 
process (BP), cellular component (CC), and molecular 
function (MF). The CC of DEGs was predominantly 
enriched in the Mitochondrial matrix, Cytoplasm, 
Extracellular exosome, Cytoophidium, Cytosol, and 
mitochondria. The MF of the DEGs was mainly 
enriched in catalytic activity, ligase activity, and 
small molecule binding. The BP of the DEGs showed 
enrichment in processes such as cellular amino acid 
metabolic process, carboxylic acid metabolic process, 
and glutamine family amino acid metabolic process.
PPI and Modular Analysis
STRING PPI network analysis presented the core 
candidate and vital gene modules in Lung cancer, 

involving 43 nodes and 272 edges. (Supplementary 2) 
GLUD1 with node degree equal to 28 and ALDH18A1, 
ASNS, GLUD2 with 25 regarded as the most important 
core of this network. (Figure 5) The co-expression 
of 43 genes presented in Figure 6 reveals the strong 
relationship between PAICS with PPAT, GART, and 
GMPS. 

Figure 2: Venny diagram for OPLS-DA extracted metabolomic genes
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Figure 3: Manhattan plot of terms from the KEGG 2021 Human gene set. Each point represents a single term along the x-axis. The y-values repre-
sent the -log10(p-value) corresponding to the enrichment of the input gene set for the term gene set. Hovering over the point will display the gene 
set term and the enrichment analysis p-value. B) Bar chart of top enriched terms from the KEGG 2021 Human gene set library. The top 10 enriched 
terms for the input gene set are displayed based on the -log10(p-value), with the actual p-value shown next to each term. The term at the top has the 
most significant overlap with the input query gene set.
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Figure 4: Scatterplot of all terms in the KEGG 2021 Human gene set library. Each point represents a term in the library. Term frequency-inverse doc-
ument frequency (TF-IDF) values were computed for the gene set corresponding to each term, and UMAP was applied to the resulting values. The 
terms are plotted based on the first two UMAP dimensions. Generally, terms with more similar gene sets are positioned closer together. Terms are 
colored by automatically identified clusters computed with the Leiden algorithm applied to the TF-IDF values. The darker and larger the point, the 
more significantly enriched the term. Hovering over points will display the term, the p-value from the enrichment calculation, and the automatically 
assigned cluster. B) Volcano plot of terms from the KEGG 2021 Human gene set. Each point represents a single term, plotted by the corresponding 
odds ratio (x-position) and -log10(p-value) (y-position) from the enrichment results of the input query gene set. The larger and darker-colored the 
point, the more significantly enriched the input gene set is for the term. Hovering over the point will display the gene set term, the odds ratio, and 
the enrichment analysis p-value.

Figure 5: PPI analysis using STRING: number of nodes:43, number of edges:272, average node degree:12.7, avg. local clustering coefficient: 0.617, 
expected number of edges:16, PPI enrichment p-value: < 1.0e-16.
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Figure 6: Co-expression scores based on RNA expression patterns, and on protein co-regulation provided by ProteomeHD
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Discussion:
The findings highlighted the involvement of significant 
metabolites such as Lactic acid, Glutamic acid, Maltose, 
Aspartic acid, Tryptophan, Glycine, Glutamine, 
Citrulline, Linoleic acid, Oleic acid, Maltotriose, 
Isothreonic acid, 5-hydroxynorvaline, Linolenic acid, 
and Taurine in lung cancer. Some of these metabolites 
had been previously identified in metabolomics studies 
[5, 15]. The identification of metabolite-related genes 
with the use of MetaBridge and differentially expressed 
genes (DEGs) came from 20 relevant GEO datasets 
with the use of Limma analysis, further elucidating the 
molecular mechanisms underlying lung cancer. The 
integration of metabolomics data with gene expression 
data led to the identification of 43 metabolic genes, 
including LDHA, LDHC, GSS, GCLC, PSAT1, GCSH, 
SHMT1, SHMT2, GLS2, GLUD1, GLUD2, GPT2, 
GFPT1, PPAT, GOT1, GOT2, IL4I1, GGT5, GAD1. The 
pathway analysis revealed enrichment of key pathways 
associated with amino acid metabolism, Alanine, 
aspartate, and glutamate metabolism, Cysteine and 
methionine metabolism, Arginine biosynthesis, Glycine, 
serine, and threonine metabolism, and D-Glutamine 
and D-glutamate metabolism are the top 5 pathways 
showing association with lung cancer progression. The 
GO term analysis further categorized the DEGs based on 
biological processes, cellular components, and molecular 
functions, providing a comprehensive understanding of 
the functional roles of these genes in lung cancer. Using 
enrichment analysis, we found that these common 
dysregulated genes were significantly enriched in 6 
cellular components, 104 biological processes, and 38 
molecular functions. Through the construction of the 
PPI network, several hub genes associated with lung 
cancer were discerned, and modular analysis provided 
a comprehensive perspective on the interplay among 
various proteins implicated in the pathophysiology of 
lung cancer. Notably, GLUD1, GLUD2, GOT1, GOT2, 
IL4I1, and GLS2 exhibited the highest node degrees in 
the network analysis.
GOT1 and GOT2 are the cytoplasmic and mitochondrial 
forms of glutamic-oxaloacetic transaminase, which is a 
pyridoxal phosphate-dependent enzyme. GOT plays a role 
in amino acid metabolism and the urea and tricarboxylic 
acid cycles. [16-18] Based on the KEGG analysis, these 
two genes are implicated in various metabolic pathways, 
including alanine, aspartate, glutamate, cysteine, 
methionine, arginine, phenylalanine, tyrosine, proline, 
and tryptophan metabolism. [18] Furthermore, GOT1 

and GOT2 exhibit co-expression with each other and 
with PSAT1 and GLUD1, respectively. (Figure 6) These 
enzymes are homodimeric in structure and display 
significant sequence similarity [19]. IL4I1 encodes a 
secreted L-amino acid oxidase protein which primarily 
catabolizes L-phenylalanine and, to a lesser extent, 
L-arginine. This protein may play a role in immune 
system escape, as it is expressed in tumor-associated 
macrophages and suppresses T-cell responses [20-
22]. This protein also contains domains thought to be 
involved in the binding of flavin adenine dinucleotide 
(FAD) cofactor [23]. Multiple transcript variants 
encoding distinct isoforms have been identified for 
IL4I1. Certain transcripts of this gene exhibit a shared 
promoter and exons within the 5’ untranslated region 
(5’ UTR) with the overlapping NUP62 gene [24]. The 
primary functions of this gene are predominantly 
associated with the metabolic pathways of tyrosine, 
phenylalanine, and tryptophan [25]. Furthermore, the 
current investigation has demonstrated the participation 
of this gene in the metabolic pathways related to 
alanine, aspartate, glutamate, and cysteine metabolism. 
The GLS2 gene encodes the mitochondrial phosphate-
activated glutaminase that catalyzes the hydrolysis 
of glutamine to stoichiometric amounts of glutamate 
and ammonia. Alternative splicing results in multiple 
transcript variants that encode different isoforms [26]. 
GLS2 primarily functions in pyrimidine metabolism, 
while also contributing to arginine biosynthesis and 
the metabolic pathways involving alanine, aspartate, 
and glutamate [27, 28]. Co-expression of this gene with 
GAD1 has been observed. GLUD encodes glutamate 
dehydrogenase, which is a mitochondrial matrix 
enzyme that catalyzes the oxidative deamination of 
glutamate to alpha-ketoglutarate and ammonia [29, 30]. 
This enzyme has an important role in regulating amino 
acid-induced insulin secretion [31]. It is allosterically 
activated by ADP and inhibited by GTP and ATP [32]. 
Activating mutations in this gene are a common cause 
of congenital hyperinsulinism [33]. Alternative splicing 
of this gene results in multiple transcript variants. 
The related glutamate dehydrogenase 2 gene on the 
human X-chromosome originated from this gene via 
retro-transposition and encodes a soluble form of 
glutamate dehydrogenase. Related pseudogenes have 
been identified on chromosomes 10, 18, and X [18]. 
Both GLUD1 and GLUD2 are involved in arginine 
biosynthesis and the metabolic pathways of alanine, 
aspartate, and glutamate [34].
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Currently, a multitude of studies have been carried out 
in the field of bioinformatics, with a significant focus 
on genomics research utilizing datasets such as The 
Cancer Genome Atlas Program (TCGA) and GEO. These 
investigations have aimed to identify biomarkers for 
cancer diagnosis and prognosis through the integration 
and re-analysis of genomic datasets [35-39]. However, 
research in the field of metabolomics, specifically 
pertaining to the integration of metabolomics data, 
remains limited. Some metabolomics studies have 
employed integrative approaches to examine the impact 
of metabolites on the genome or proteome [35, 40-
42].  Wang et al. [42] conducted a study investigating 
the tissue-based metabolomics profile of gastric 
cancer using LC-MS/MS analysis, which led to the 
identification of several different metabolites. With the 
help of TCGA transcriptomics data, they discovered 
an association between Glycerophospholipid (GPL) 
metabolism and gastric cancer progression. Similarly, 
Fang et al. [40] utilized a machine learning (ML) 
approach that incorporates various omics features to 
enhance the accuracy of predicting metastatic prostate 
cancer prognosis. In contrast to earlier studies that relied 
on limited sample sets of genomic profiles, our research 
systematically searched GEO datasets and selected 
20 datasets to identify optimal genomic markers. 
Furthermore, for metabolome identification, multiple 
metabolomics datasets were incorporated to enhance 
the robustness and credibility of this project.

However, some limitations hinder the comprehensive 
analysis of genomic and metabolomic data. The presence 
of missing values in genomics and metabolomics 
datasets posed challenges in drawing the accuracy of 
the analysis. Secondly, the scarcity of metabolomics 
datasets compared to genomics databases limited the 
comprehensive exploration of metabolic pathways and 
interactions, hindering a thorough understanding of 
metabolic signatures. Additionally, incomplete staging 
information for lung cancer in some datasets complicates 
the differentiation between early and advanced stages, 
impeding the exploration of stage-specific metabolic 
and genomic profiles crucial for personalized treatment 
strategies. Overcoming these limitations requires a 
concerted effort to address data completeness issues, 
expand metabolomics databases, and integrate multi-
omics approaches to enhance the characterization of 
biological mechanisms in the context of lung cancer 
progression.  

In conclusion, this study presents a comprehensive 
bioinformatic integration of genomic and metabolomic 
datasets, employing specialized computational tools. Our 
analysis reveals that the identified genomic alterations 
and metabolomic pathways offer dual clinical value: they 
serve as potential targets for personalized therapeutic 
interventions while simultaneously functioning as 
biomarkers and early diagnostic indicators.
The investigation focuses on two fundamental omics 
layers in lung cancer pathogenesis. While genomic 
alterations exhibit long-term effects, we demonstrate 
that somatic mutations alone are insufficient for 
oncogenesis, requiring complementary dysregulation to 
drive the development of distinct lung cancer subtypes. 
Importantly, our findings establish that persistent 
genetic instability must induce subsequent metabolomic 
perturbations to facilitate malignant progression. This 
hierarchical relationship explains why metabolomic 
imbalances show a stronger temporal association with 
cancer incidence and more acute effects compared to 
genomic aberrations.
These results have significant implications for 
research prioritization. Longitudinal studies of lung 
cancer predisposition should emphasize hereditary 
genetic factors and their cumulative impacts, whereas 
investigations targeting individualized medicine 
may benefit from focusing on dynamic metabolomic 
profiles. Notably, the differential kinetics between 
these omics layers is striking: genomic changes occur 
infrequently and manifest gradually, while metabolomic 
perturbations respond rapidly to environmental 
influences and demonstrate more immediate correlation 
with tumor initiation.
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