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A B S t R A c t

Colorectal cancer (CRC) is a leading cause of death worldwide. Despite improved 
treatment procedures, the disease can rarely be cured completely mainly due to its 
recurrence. It has been proved that cancer recurrence is caused by cancer stem cells 
(CSCs); rare and immortal cells which have the ability to initiate and develop tumors 
and protect them against anticancer agents. CSCs are generated as a result of failures 
in intracellular signaling pathways, in which Wnt/β-catenin plays a major role in 
colorectal cancer. The Wnt/β-catenin signaling pathway is thought to be the major 
pathway in the maintenance of homeostasis of intestinal stem cells. The prolifera-
tion and upward migration of colony crypt daughter cells, and their differentiation 
into different epithelial cell types is regulated in part by Wnt/β-catenin signaling, 
suggesting its essential role in intestinal development and homeostasis. However, 
continuous activation of this signaling pathway in intestinal stem cells due to somatic 
mutations is a hallmark of most CRCs. Hence, targeting Wnt/β-catenin signaling in 
CSCs can be a focus of new treatment strategies.
Curcumin, the effective compound of the plant Curcuma longa, has been studied as 
an anticancer agent. Recently, it has been shown that curcumin and its analogues can 
decrease the risk of tumor recurrence by targeting CSCs via various cell signaling 
pathways, in particular the Wnt/β-catenin pathway. In this review, we shall describe 
the relationship between Wnt-regulated CSCs and progression of CRC, and the effi-
cacy of curcumin and its analogues in targeting colorectal CSCs and the Wnt/β-cat-
enin molecular pathway involved.
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INTRODUCTION:

Colorectal cancer (CRC) is the third common 
cancer in developed countries1. It is predicted 
that the 5 year survival rate for patients with 

advanced colon cancer is only 8%. Various factors 
including a high fat diet, chronic inflammation, and 
genomic instability are strongly associated with CRC 
occurrence2. Despite conventional treatments include 
aggressive surgical resection of tumors and chemo-
therapy, almost 50% of CRC patients experience recur-
rence3.
Intestinal stem cells (ISCs) have a major role in CRC 
progression4. Recent evidence suggests that factors in-
cluding aging and the total number of stem cell divi-
sions increase the frequency of gene mutations in ISCs5 
in addition to inherent germ line mutations6. While 
several biological pathways control ISC development, 
in most cases it is aberrant Wnt signals that drive the 
pathogenesis of CRCs6. It has been shown that 94% of 
CRCs are caused by mutations in one or more mole-
cules involved in the Wnt signaling pathway7 and these 
mutations are the first step in ISC-initiated gut malfor-
mations8. Due to continuous activation of the Wnt sig-
naling pathway, normal ISCs can transform into cancer 
stem cells (CSCs) which have the capacity for tumor in-
itiation with features such as self-renewal, differentia-
tion and resistance to chemotherapeutic agents9. Hence, 
it seems that targeting active molecular mechanisms in 
these cells can play a significant role in cancer treat-
ment.
In recent decades, intense efforts have been made to 
identify natural compound drugs. These products are 
of interest due to their low production costs, structural 
diversity, and multiple usage to treat various diseases10. 
Curcumin is a polyphenol compound,   extracted from 
the plant curcuma longa, that has been shown to have 
anti-inflammatory, antimicrobial, and antioxidant ac-

tivities11. In addition, increasing evidence shows that 
curcumin may have anti-cancer effects12,13 and can 
inhibit molecular signaling pathways associated with 
CRC in different human cancer cell lines14. Recent ad-
vancements in identification of the details of the Wnt 
signaling pathway and its significant in CRC have in-
duced scientists to test the effects of natural compound 
on this pathway15. It has been suggested that curcumin 
has the ability to target CSCs self-renewal pathways, 
one of the most important of which is the Wnt/β-catenin 
pathway16. What increases the importance of curcumin 
in cancer studies is that curcumin has asymmetrical ef-
fects on normal and cancer cells, an issue that has been a 
major obstacle to continuing chemotherapeutic regimes 
in many patients with CRC. Curcumin  suppresses  mo-
lecular abnormalities in the Wnt pathway in CSCs17,18 
but it has opposing effects on normal stem cells19,20. 
Also it has been predicted that curcumin has a much 
greater uptake by malignant cells compared to normal 
cells21. However, the clinical usage of curcumin is lim-
ited because of its low aqueous solubility, and poor 
pharmacokinetic profile. A good method for improving 
the poor biopharmaceutical characteristics of curcumin 
is to promote its aqueous solubility using nanocarriers.  
Nanocarriers are small compounds (typically 10-100 
nm) and, in addition to improvement of solubility, they 
can be used for targeted drug delivery22,23. Nanocarriers 
can improve the circulation time of the loaded thera-
peutic agents. Besides, Nanocarriers can accumulate 
in much greater concentrations in tumor tissue than in 
normal tissues and create the ‘enhanced permeation and 
retention’ (EPR) effect24,25.

The Wnt Signaling Pathway:
Wnt signaling is an evolutionarily conserved pathway 
and plays an important role in stem cell maintenance, 
embryogenesis, cell proliferation, differentiation, and 
apoptosis26. Wnts are glycoproteins which are full of 
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cysteine residue27. In normal situations, Wnt signaling 
is silent in a non-cycling cell28. The Wnt signaling cas-
cade is typically initiated when the Wnt ligand binds to 
seven transmembrane receptor complexes which are a 
member of the Frizzled family and either of the single 
transmembrane low-density lipoprotein receptor relat-
ed proteins 5 or 6 (LRP5/6)29,30 which leads to accumu-
lation of β-catenin in the nucleus29.
β-catenin, a 781-amino acid protein encoded by the 
CTNNB1 gene, has  two different roles in cells, as a 
scaffolding protein which is involved in cell adhesion  
and a transcriptional regulator factors. It seems that in 
normal gastrointestinal epithelial cells, β-catenin on the 
one hand is related to E-cadherin and therefore medi-
ates adherent junctions, and on the other hand is related 
to α-catenin and therefore participates in the intracellu-
lar actin cytoskeleton31. The portion of β-catenin which 
is involved in the cell cytoskeleton has a long half-life 
in comparison with the free β-catenin in the cytoplasm 
and nucleus which is responsible for regulation of Wnt 
signaling31.
In the absence of extracellular Wnt ligand binding to 
the Frizzled and LRP5/6 coreceptors, ubiquitous ki-
nases such as Casein kinase 1α (CK1α) and glycogen 
synthase kinase 3 beta (GSK3β) phosphorylate β-cat-
enin at distinct N-terminal serine and threonine resi-
dues. The phosphorylated β-catenin is recognized by 
F-box containing E3-ligase protein β-TrCP that forms 
a complex with Skp1/Cullin machinery to attach ubiq-
uitin to β-catenin32,33 and which is then rapidly degrad-
ed via the 26S proteasome33,34. The phosphorylation of 
β-catenin takes place in a dynamic multiprotein com-
plex that has been termed the “destruction complex’’, 
its components comprising  two scaffolding proteins, 
the adenomatous polyposis coli (APC) and Axin in ad-
dition to  ubiquitous kinases and Protein phosphatase 
2A (PP2A)35,36. Axin can increase the phosphorylation 

rate of β-catenin by bringing both substrates (β-catenin 
and the enzymatic activities  of GSK3β and CK1α) in 
close vicinity, enhancing effective concentrations 2400 
fold37. Wnt signal transduction is initiated when Wnt 
ligand interacts with both FZD and LRP5/6 receptors 
and makes a bridge complex between their extracellu-
lar domains via various sites of the Wnt molecule and 
forms the WNT–FZD–LRP5/6 complex. The LRP5/6 
receptor is then phosphorylated by the membrane-asso-
ciated form of GSK3β and casein kinase I γ (CKIγ( in 
five repeated PPP(S/T)P motifs38,39. One or more of the 
phosphorylated LRP5/6 motifs  bind with Axin, Axin 
sequester in the plasma membrane, and the content of 
Axin is reduced in the destruction complex40. Also, this 
inhibits the role of Axin  in  mediating β-catenin’s nu-
clear export41 (Figure 1).
In order for Axin to remain in the plasma membrane, 
Disheveled proteins are also required. Wnt signals are 
relayed from receptors to effectors with the help of 
Disheveled42. Upon Wnt-receptor binding,  Disheve-
led  rapidly  becomes  phosphorylated43. There is an 
amino-terminal DIX domain in Disheveled which is 
very similar to the DIX domain in the Axin molecule. 
Disheveled and Axin proteins interact with each oth-
er via the DIX domain. Also, this complex may be re-
sponsible for interaction between the FZD and LRP5/6 
receptors44. Translocation of β-catenin from the cell 
membrane into the nucleus creates an increased inter-
action with proteins of the T-cell factor/lymphoid en-
hancer factor (TCF/LEF) DNA binding protein family45 
and  seems to decrease their affinity to binding the fam-
ily of transcriptional co-repressor proteins that include 
transducin-like enhancer of split/groucho related gene 
(TLE/GRG) family and  possibly the CtBP and TCF/
LEF proteins46,47.  
Accumulation of β-catenin in the nucleus leads to fun-
damental changes in the process of gene expression 
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regulation. A lot of genes are involved in this process, 
such as pro oncogene  c-myc48, Cyclin D149, several 
pro invasive factors including matrix  metalloprotease  
7 (MMP-7)/Matrilysin50, membrane-type 1 MMP 
(MT1-MMP)51, laminin-5 γ2chain52, and CD448. Also, 
β-catenin controls the expression of EphB2/EphB3 re-
ceptors and their ligand Ephrin B1, which plays a role 
in stem cell proliferation, differentiation, migration  
and  also plays a role in the sorting of stem cells  along 
the crypt-villus axis into their correct position53. 
Feedback control in the Wnt signaling pathway is im-

portant in order to limit the signal leading to tumor de-
velopment54,55. Various negative and positive feedback 
loops have been described. Ectopic activation of the 
special promoter, lymphoid enhancer-binding factor 1 
(LEF1) (an isoform of full-length LEF which possess-
es a binding site for β-catenin) creates a positive feed-
back56. However, it is important to note that this pro-
moter differs from the intrinsic promoter that activates 
the negative isoform. Besides, activation of most abun-
dant transcription factor Tcf1 isoforms that encode a 
protein which lacks the β-catenin interaction domain 

Figure 1. Illustration of the intestinal stem cells (ISCs) and Wnt signaling pathway. Active ISCs (blue) are located at the 
firth position bellow the Paneth cells, as measured from the crypt base. CRC is associated with aberrant activation of the 
Wnt signaling pathway in active ISCs. Curcumin suppresses the Wnt pathway in ISCs and prevents cell proliferation and 
self-renewal. TA: Transit-Amplifying; LRC: Label-Retaining Cells; CBC: Crypt Base Columnar; LRC 5+ (Leucine Rich Re-
peat Containing G Protein-Coupled Receptor 5); APC:  Adenomatous Polyposis Coli; CK1α: Casein kinase 1α; GSK3β: 
Glycogen Synthase Kinase 3 Beta; PP2A: Protein phosphatase 2A; TCF/LEF: T-cell factor/lymphoid enhancer factor.
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generally act as negative feedback loops57. Similar to 
Axin, Axin2/Conductin which expresses in a restrict-
ed manner can promote negative feedback of the Wnt 
pathway by phosphorylation and degradation of β-cat-
enin58-60. Naked cuticle (Nkd) seems to exert negative 
feedback inhibition via binding to the PDZ domain of 
Disheveled61. Furthermore, EphB2/3 and ITF2 which 
are Wnt target genes repress tumor progression, and 
their inappropriate expression correlates with stage of 
malignancy54,55.  
Moreover, in relation to the molecular mechanism of 
R-spondin, it has been shown that cell surface trans-
membrane E3 ubiquitin ligase Zinc and Ring Finger 
3(ZNRF3) and its functional homolog Ring finger 
protein 43 (RNF43) are negative feedback regulators 
of Wnt signaling62,63. ZNRF3 and RNF43 which ex-
press by β-catenin binding to TCF transcription factors 
degrade Wnt receptors Frizzled and LRP6 via the Di-
shevelled protein64. Also the R-spondin protein family 
(RSPO1-4) create a positive feedback by sensitizing 
cells to low doses of Wnt proteins65,66. R-spondin rec-
ognizes LGR4/5/6 (Leucine Rich Repeat Containing 
G Protein-Coupled Receptor) as a receptor, and binds 
with ZNRF3/RNF43, inducing ubiquitination and deg-
radation of ZNRF3/RNF4367-69. In general, R-spon-
din-ZNRF3/RNF43 signaling plays a critical regulato-
ry mechanism in the Wnt pathway, therefore mutations 
that decrease RNF43/ZNRF3 or lead to overexpression 
of R-spondin can enhance the risk of cancer70.

Intestinal stem cells
The gastrointestinal epithelium is a dynamic system 
which is continuously renewed every 4–5 days. The 
renewal process is controlled by multipotent stem cells 
which reside at the base of the intestinal crypts. These 
stem cells are fast-cycling crypt base columnar (CBC) 
cells which are dispersed between paneth cells at the 

crypt base71. CBCs produce the transit-amplifying (TA) 
progenitors cells, divide 4-5 times and migrate from 
the crypt bottom to the top of the villus and eventually 
differentiate into four primary epithelial cell types in-
cluding absorptive, goblet, endocrine, and paneth cells, 
which, unlike the other cells move toward the bottom of 
the crypt72. CBCs are accountable for maintaining epi-
thelial homeostasis in healthy conditions. It is assumed 
that Lgr5 which is a G-protein-coupled receptor and a 
target gene of Wnt β-catenin signaling is a marker of 
CBC cells73. Each crypt has 14-16 Lgr5 positive cells74. 
The division period in these cells lasts 21.5h and the 
mitosis process is symmetric with accidental distribu-
tion of DNA to daughter cells75. Accumulated evidence 
points to several additional markers of CBC stem cells 
such as Ascl276, sox977, and  Olfactomedin4 (Olfm4) 
which are Wnt target genes76. Some other markers of 
CBC stem cells are Smoc275, Rnf4363, Znrf378, Cd2479, 
Cd4480, Cd13381, Cd16682and Musashi-183 (Figure 1).
Another specified population of intestinal stem cells 
exists at the 4+ position of the crypts, which are inac-
tive under intact conditions with slow cycling. There 
are 4-6 ISCs in this position, which divide every 24 
hours(84). These cells are independent of the Wn-
t/β-catenin signaling pathway85 and are termed la-
bel-retaining cells (LRC)85, which create a stock of 
ISCs for regeneration after injury86. Relevant factors 
used to identify these cells are marker genes: Bmi1, 
HopX, mTERT and Lrig187-89. Cell division in LRCs 
is asymmetric, and parental DNA strands were appro-
priated to larger offspring cells, while the newly syn-
thesized strands were allocated to the smaller offspring 
cell. Hence, the larger cells possess stem cell proper-
ties and the smaller cells become TA progenitors for 
replacing injured cells in the epithelium90. The Lgr5 
positive and Bmi1positive stem cells can convert into 
each other in order to maintain the quantity of stem 
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cells91.
Stem cells lie on a microenvironment comprising niche 
cells. There are two important cell lineages in niche 
microenvironment; paneth cells and pericryptal myofi-
broblasts. Wnt signals are secreted from niche cells for 
ISCs and there is a gradient of Wnt signaling along 
the crypt-villus axis92. It is reported that Paneth cells 
secrete Wnt3 -which is a ligand for LRP5/6 and Friz-
zled receptors on the surface of ISCs- which leads to 
upregulation of c-Myc expression93,94. It has also been 
reported that myofibroblasts are capable of secreting 
R-spondin1 which couples to receptors Lgr4/5, there-
fore increasing LRP6 on the cell surface and sensitiz-
ing ISCs to Wnt395,96. Increasing evidence suggests 
that Wnt signals are not only important for ISCs pro-
liferation, but also for their differentiation into mature 
Paneth cells. In addition it has been predicted that the 
Wnt pathway has a regulatory transcriptional role in 
Eph/Ephrin signaling97. Moreover, other factors such 
as bone morphogenetic proteins (BMP), antagonists 
gremlin1 and gremlin2 and Notch  signaling  pathways  
can affect ISCs behavior98,99.

Curcumin and Cancer Stem Cells and the 
Wnt Pathway Involved
CSCs play a vigorous potential role in tumor initiation, 
recurrence and metastasis100. They are not only more 
resistant to traditional anticancer therapies in com-
parison with differentiated cells, but they also secure 
themselves by producing different ingredient, leading 
to a significant increase in their numbers following 
chemotherapeutic treatment101. Hence, targeting these 
cells and the cell signaling involved in their prolifera-
tion and growth can introduce promising approaches in 
cancer treatment.
Recently it has been reported that curcumin has the 

convincing potency to target CSCs in CRC by influ-
encing the CSC self-renewal pathways, and in particu-
lar, the Wnt/β-catenin signaling pathway102,103. Also, 
it has been suggested that a combination of curcumin 
and traditional anti-cancer regimes may be capable of 
yielding better results in cancer treatment and in con-
quering tumor resistance104,105. Common cell surface 
markers used to identify cancer stem cells(CSCs) are 
CD34, CD44106, CD133107, CD24, aldehyde  dehy-
drogenase  activity(ALDH)108, DCLK1 and Lgr5109, 
some of which are Wnt target genes. Other hallmarks 
of CSCs are their capacity to form spheroids and holo-
clones in culture110.  It has been reported that curcumin 
has the capability to inhibit sphere-forming ability in  
cultured stem cells that possess CSC properties in a 
conditioned medium111-114.
Incubation of CRC cell lines with 5-fiuorouracil and 
oxaliplatin which are standard colon cancer therapies 
in the form of monotherapy or combination therapy, 
resulted in an increased expression of Wnt regulated 
cell surface markers CD133, CD44 and CD166, sug-
gesting an increase in cancer stem cells. Addition of 
curcumin to these drugs decreased their ability to form 
a sphere and therefore the expression of cancer stem 
cell markers.  Hence, combination therapy alongside 
curcumin can be more effective in order to eliminate 
cancer stem cells113. In another study, ALDH1 which is 
regulated by 4e-Catenin/TCF activity108 was used as a 
marker for stem cells. Exposure of HCT116 to oxalip-
latin increased ALDH1 activity in resistant HCT116 
cells. Combination of curcumin with oxaliplatin in-
hibited the activity of ALDH115. It has also been re-
ported that combination of curcumin with dasatinib 
(SRC inhibitor anti-cancer drug)116 to treat FOLFOX 
resistant HCT-116 and HT-29 cell lines decreased the 
expression of ALDH1, CD44, CD133 and CD166 by 
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about 80-90% and inhibited colony and colonsphere 
formation112. The authors suggest that curcumin may 
be utilized to enhance the effectiveness of targeted 
cancer drugs. Also, this study indicates that curcumin 
can lessen the dasatinib dosage and therefore reduce 
its toxicity112. Also, curcumin downregulates DCLK1, 
CD44, ALDH1, Lgr5 and Nanog expression in colon 
cancer stem cells and halts spheroid culture and tumor 
xenograft growth117. In addition Kakarala et al showed 
that curcumin decreases the percentage of ALDH1 
positive cells that were capable of mammosphere for-
mation. In addition, the wnt signaling involved was 
assessed by utilizing the TCF-Lef Topflash reporter 
system and a potent inhibitory effect on Wnt signaling 
by curcumin was seen111.
Kim et al assessed novel data about the effects of cur-
cumin on Lgr5 positive stem cells in azoxymethane 
(AOM) induced tumor. Their evidence suggests that 
curcumin reduces AOM-induced nuclear β/catenin 
levels in aberrant crypt foci and promotes apoptosis 
in damaged Lgr5 positive stem cells. DNA-damaged 
Lgr5 positive stem cells were more sensitive to cur-
cumin in comparison with DNA-damaged differenti-
ated cells. As a result they suggest that elimination of 
damaged Lgr5 positive stem cells by dietary factors 
can be a therapeutic strategy to reduce the risk of colon 
cancer118. 
Novel formulations of curcumin have better bioavaila-
bility than free curcumin119. Wang et al studied encap-
sulated curcumin (CSO-SA micelles) in comparison 
with free curcumin and empty CSO-SA. Curcum-
in-loaded CSO-SA micelles possessed more stability 
and efficiency.  The expression rate of CSCs marker 
CD44+ and CD24+ markers were inhibited and sphe-
roid formation was suppressed  in vitro and in vivo120. 
Difluorinated-curcumin (CDF) -another new formula-

tion of curcumin- was used to treat FOLFOX-resist-
ant colorectal cancer stem cells. CSCs which were 
chemo-resistant were treated with a combination of  
CDF  and  FOLFOX, which led to significant inhibi-
tion of CSCs in comparison with free curcumin and 
FOLFOX121.

Curcumin, CRC and Clinical Trials 
The effects of curcumin in colorectal cancer have 
been studied in clinical trials during the past 25 years
(Table 1). These studies address the pharmacokinet-
ics, pharmacodynamics, safety and effective dose 
of this component. A few of them will be mentioned 
here. A pharmacodynamics and pharmacokinetic study 
of oral curcuma extract was performed in 15 patients 
with colorectal cancer. Curcuma extract was adminis-
tered safely at doses of 440 to 2200 mg once a day 
for a period of 4 months which included 36-180 mg 
of curcumin. No toxicity was observed and all doses 
were tolerated by patients. Curcumin and its metabo-
lites were not found in the plasma or urine. Levels of 
leukocytic M1G remained constant and were not af-
fected by treatment, but a 59% decrease in lympho-
cytic glutathione S-transferase (GST) activity was seen 
following consumption of 440 mg for 29 days, which 
was not observed at higher doses. After 2 months of 
treatment, the venous blood CEA levels of one patient 
who had consumed 440 mg of extract had decreased by 
about 40%122. A dose escalation study of curcumin at 
doses of 0.5-12g in patients with preneoplastic lesions 
for a period of 3 months did not show any toxic effect 
of curcumin up to 8g per day. Patients did not accept 
doses of 12 g/day due to high volume pills. The serum 
concentration of curcumin was undetectable in doses 
of less than 4 g. At higher doses serum peak curcumin 
concentrations were seen 1 to 2 hours after ingestion 
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and decreased gradually within the next12 hours123. In 
a phase I clinical trial, curcumin at doses of 0.45 to 
3.6 g was administered to 15 patients with advanced 
CRC who were refractory to chemotherapy for a dura-
tion of 4 months. Curcumin treatment was well toler-
ated, and there was no toxicity at any doses. Although 
oral curcumin does not affect malignancy by  chang-
ing tumor markers or serum cholesterol, but it does 
however decrease inducible prostaglandin E2 (PGE2) 
and inhibit cyclooxygenase-2 (COX-2) activity124. In 
another study, curcumin capsules (3600, 1800, or 450 
mg daily) were ingested by patients with CRC daily 
for 7 days. Curcumin at a dose of 3600 mg decreased 
the level of M1G (pyrimido [1, 2-a] purin-10(3H)-one) 
significantly, but the level of COX2 was not affected 
in malignant colorectal tissue. The study showed that 
the ingestion of 3.6 g curcumin daily is pharmacolog-
ically efficacious. Trace levels of curcumin showed 
negligible distribution in peripheral circulation and 
outside of the gut125. Also in one study 126 patients 
with CRC were treated by 360 mg curcumin daily, and 
results were compared with a placebo group. Results 
in the group receiving curcumin treatment comprised 
increased body weight, diminished serum TNF-alpha 
level and improved apoptotic pathway in cancer cells. 
Moreover, the general health in patients had improved 
through the mechanism of enhanced expression of the 
p53 molecule in tumor tissue126. The effects of oral 
curcumin on aberrant crypt foci (ACF) was assessed 
in a phase IIa clinical trial. Curcumin at doses of 2 or 
4 g per day for 30 days was administered to 44 eligible 
smokers with 8 or more ACF. Curcumin was well tol-
erated at both doses. Although curcumin did not have 
any effect on PGE2, 5-HETE and Ki-67 in ACF or nor-
mal mucosa, ACF numbers were significantly reduced 
in patients receiving the 4 g dose, accompanied by an 

increase in post treatment plasma curcumin/conjugate 
levels127. Moreover in a clinical pilot study curcumin 
C3 complex (2.35 g) was administered once daily for 
14 days to 24 patients who had colorectal endoscopy 
or surgical resection in their treatment program. Cur-
cuminoids were detected in all urine samples, 9 out 
of 24 plasma samples and 23 colon mucosa biopsies. 
Curcumin glucuronide which is the major conjugate 
form of curcumin was detected in 29 out of 35 biopsy 
samples. Active levels of topical curcumin were de-
tected in colonic mucosa after multiple tissue washes. 
Also, the absence of systemic accumulation confirmed 
the long term safety of curcumin consumption128.
Inflammatory bowel diseases such as ulcerative colitis 
and Crohn’s disease can increase the risk of colorectal 
cancer among patients129. There is a lot of evidence that 
curcumin has anti-inflammatory effects130. The effects 
of curcumin in inflammatory bowel diseases has been 
investigated in clinical trials. In a placebo-controlled 
double-blind study of curcumin, 10 patients with ei-
ther ulcerative colitis or Crohn’s disease received 1.11 
or 1.65 g daily for 2 or 3 months. The results suggest 
that curcumin in combination with conventional drugs 
can be used in the clinic for treatment of ulcerative 
colitis and Crohn’s disease and can delay disease pro-
gression131. Similarly, the effects of curcumin on pre-
vention of relapse of patients with quiescent ulcerative 
colitis were assessed in a double-blind, placebo-con-
trolled trial. Ingestion of 2g curcumin twice daily in 
addition to sulfasalazine or mesalamine for 6 months 
showed significant improvement of the clinical activ-
ity and endoscopic indices compared to the placebo 
plus sulfasalazine or mesalamine group132. In a place-
bo-controlled pilot study 23 patients with distal ulcer-
ative colitis received NCB-02 (standardized extract of 
Curcuma longa with 72% curcumin) enema plus oral 
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5-ASA and their results were compared with 22 pa-
tients who received placebo enema plus oral 5-ASA. 
After 8 weeks of treatment, the outcomes of clinical 
remission and improvement on endoscopy were sig-
nificantly better in the NCB-02 arm133. These results 
hint that there is no need to worry about the safety of 
curcumin, but due to the small sample size in these 
studies, it is difficult to introduce curcumin as a chem-
opreventive agent in CRC.

CONCLUSION: 
Wnt signaling is an important pathway in the regula-
tion of ISCs homeostasis, and any disturbance in the 
regulation of the expression of the genes involved in 
this pathway may lead to adverse events. Its major role 
in homeostasis of ISCs and development of CRC has 
been a focus of CRC treatment studies, so that sever-
al agents have been developed to target this pathway. 
Recently the use of plant compounds in cancer studies 
has been considered. The anticancer effects of curcum-
in have been shown in various studies. This compound 
has now entered the clinical phases of evaluation
(Table 1). Evidence suggests that curcumin can tar-
gets the Wnt pathway in intestinal CSCs and inhibit 
their proliferation and resistance to chemotherapy. The 
advantage of curcumin compared to chemotherapeutic 
agents is its asymmetrical effect on normal and can-
cerous cells. Therefore, although curcumin inhibits 
the proliferation of cancer cells, it can be used without 
harm, as has been confirmed by its use as a culinary 
spice for hundreds of years. However, the discovery of 
anticancer mechanisms of plant compounds can pro-
vide novel cancer therapeutic strategies.
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