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ABSTRACT

Nowadays, decision analysis models are extensively used in solving healthcare prob-
lems. Considering the limited resources, the results of these studies will greatly assist
policymakers with resource allocation. The purpose of this study is to provide a review
of different decision analysis models in healthcare systems and to compare the com-
ponents used in developing these models in studies addressing cervical cancer pre-
vention. In this comprehensive review on decision analysis models used for cervical
cancer prevention, we determined that the major components of the models included
costs, outcomes, cycle lengths, discount rate, and perspective. The most commonly
used model found in our review was the Markov model; nevertheless, it appears that
dynamic models are gaining popularity over recent years. Conclusion: Using decision
analysis models and encouraging healthcare policymakers to apply the results of mod-
eling studies will result in saving time and costs, and will facilitate decision making

in healthcare issues.
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INTRODUCTION

he ever-growing advancements in technol-

ogy in the field of healthcare, as well as the

limitations of resources mandate policy-
makers to seek the tools and science of decision
making. Nowadays, economic studies are exten-
sively applied to answer questions in healthcare.
These studies are mostly based on mathematical
models and provide the policymaker with powerful
tools to make decisions regarding choice of health-
care interventions. Such studies compare the
costs and the outcomes of a certain intervention
with the costs and outcomes of another. Quantita-
tive models use different techniques, as outlined
in Table 1. Numerous variables are involved in
development of a model, including the course of
the disease, time horizon, data availability, and
perspective of analysis2. Simulation models are
extensively used due to their flexible techniques,
ability to use variables and uncertainty, and the
ability to prepare graphic displays® 4. Nowadays,
decision analysis models have an established po-
sition in the field of healthcare. Simulation models
are commonly used for cancer due to its chronic
nature, high costs, and presence of diverse treat-
ments*. Considering the fact that certain cancers
may be preventable, these models enable the
policymakers to make better decisions®. In 2012,
annually 14.1 million new cases of cancer were di-
agnosed worldwide. The mortality rate of cancer
is 8.2 million cases, and 32.6 million people are
living with more than 5 years since their cancer
was diagnosed. In less developed countries, can-
cers amount to 57% (8 million) new cases, with
65% (5.3 million) mortality and 48% (15.6 million)
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5-year prevalence®. According to the latest GLOB-
OCAN report in 2012, cervical cancer is the fourth
leading cancer in women worldwide, and ranks 7th
as the most common malignancy in both sexes®.
Overall, 528,000 new cases of cervical cancer
were diagnosed in 2012. The long course of this
malignancy provides an opportunity for effective
screening to identify the patient at a pre-invasive
stage, and thus initiate therapy in a timely man-
ner’. The Papanicolau test was first introduced in
1930 by George Papanicolau. Later on, Ernest
Ayre, an American gynecologist, devised a tech-
nique to isolate cells in the transitional zone. In
1940, Pap smear found its place as the screening
method with widespread application and still re-
mains the first line of screening in most countries®.
In England, the National Health Service Cervical
Cancer Programme (NHSCCP) was launched in
1988 and managed to reduce incidence by 42%?°.
In the United States, the Surveillance, Epidemiolo-
gy, and End-Results (SEER) program demonstrat-
ed that the incidence and mortality of cervical can-
cer have reduced to 43% and 46%, respectively,
from 1973 to 1995, In addition, reports from 13
European countries with organized screening pro-
grams indicated a reduction in cervical cancer.
Identification of the main causative agent for cervi-
cal cancer, i.e. the Human Papilloma Virus (HPV),
has resulted in modifications in screening meth-
ods™ 12, This highlights the importance of deci-
sion making techniques in selecting the screening
method for this malignancy*. Simulation models
are a type of multivariate decision-making method
to help policymakers to select the most efficient
policy through the decision analysis approach*. In
the field of cancer studies and prevention, decision
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analysis models are extensively applied''¢. Pre-
vious studies indicate that the outcomes of can-
cer are closely related to income and wealth. For
instance, better outcomes in breast and colorec-
tal cancer have been substantially associated
with growth domestic product per capita (GDP) of
countries'. Therefore, another crucial feature of
decision making models is their contribution to re-
source allocation for healthcare plans.

In this review, we provided a definition of each
model and compare the various models of decision
analysis. Subsequently, we explored the applica-
tion of these models in economic studies of cervi-
cal cancer screening as a healthcare problem. The
models addressed in this study include the decision
tree, Markov model, dynamic systems, Monte-Car-
lo simulation model, and discrete event simulation.

TYPES OF MODELS
Decision Tree

A Decision tree is one of the simplest models of
decision making. In this method, the patients’ prog-
nosis is modeled according to the type of treatment
chosen'®. The considered interventions for a prob-
lem are investigated in pathways and ramifications.
Each pathway shows the procedures of one inter-
vention to the end. At the end of each pathway, var-
iables such as costs, years of life, and QALY are
assigned.

Decision trees are widely used due to their simplic-
ity and clarity. These models are easily developed
and their interpretation is relatively simple, and
thus applicable to cohort and individual studies.
However, their time-independent nature precludes
their use in models which take time into account.

Table 1. Comparison of different methods of quantitative models

Deterministic VS.

Stochastic

- Used for constant and predictable events

- Combination of random events and behaviors
- Used in specific and long-term patterns

Dynamic VS.

Static

- Stage of variables change over time.

-The components of the model allow for the
change in the system.

- Prediction is made with high precision.

- Provides an instantaneous image of the sys-
tem in a specific time point.

- Prediction is made based on inference.

- These models are limited in precision.
- Easily developed.

Continuous VS.

Discrete

Continuous variables are used with linear
real numbers, so that between every two
values, a third value may exist.

Variables belong to a series of possible and
available values on lists of time restraints or in-
tegers.

28|

I Basic & Clinical Cancer Research, 2017; 9(1): 26-39

www.bccrjournal.com



Another weakness of these models is that addition
of disease stage causes them complicated and thus
inapplicable to complicated scenarios. Moreover,
they cannot be looped'®-2",

Markov Model

These models allow for a simple and flexible se-
quence of events that occur throughout the course
of the disease over a specific time period. They are
usually applied when the risk of the disease oc-
cur over time. It is assumed that at a given time,
the patients are one of the health states and they
may transition between the states. The number of
the states and the duration of each state (named
the cycle) depend on the question requiring a de-
cision. In acute and infection diseases, the cycles
are quite short, spanning a few days to a month.
In chronic diseases, such as cancers, the cycles
last six months to a year. These studies are usually
conducted on hypothetical cohorts. All considered
conditions must be demonstrated in different stag-
es. If the time horizon spans longer than a year, the
costs and outcomes need to be discounted'® 2022, |n
the hypothetical cohort of Markov models, transition
probability helps to alter the distribution of patients
in each state over the cycle?.

Markov models assume that the transition occurs
at the end of each cycle. In fact, this event may oc-
cur at any time point. For this reason, these models
use half cycle corrections, which are important for
evaluation health-related outcomes in long-lasting
diseases such as cancer?.

This model may be applied to the individual as well
as the population. Also, the interaction between in-
dividuals or populations is allowed. One challenge
of these models is that with addition of disease
stage, the models become rapidly complicated?.
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Dynamic Systems

Dynamic systems are deterministic in nature and
consist of qualitative and quantitative aspects. For
this reason, these models are used for improving
the understanding of an identified problem, as well
as enhancing the structure of the problem and the
relationship between variables®. Dynamic decision
making models are applied to problems that have
high uncertainty and require time. These models
are recommended when continuous information of
different perspectives is required®.

One strength of these models is that they allow for
the interaction between the population and the en-
vironment. Moreover, the recurrence feedback may
be considered in these models. However, they are
more oriented toward the population rather than the
individual?'.

Monte-Carlo Stimulation Model

Monte-Carlo models are also known as individual
simulation. In these models, a large population en-
ters the model, but only few are randomly selected
to transition from one stage to another®. Similar to
Markov models, Monte-Carlo models constitute a
form of cohort, but they simulate more clinical com-
plications compared to Markov models?? 2%, Usually
in Markov models, the individuals of the presump-
tive cohort go through a given path, while in Mon-
te-Carlo models, the individual undergoes transition
in a stochastic fashion. In addition, the outcomes
are calculated differently in these two models?.
Monte-Carlo models are also known as micro-sim-
ulation models. They are sometimes used as a de-
cision analysis method and not a decision analysis
model because they may be combined with other
models such as the decision tree or Markov mod-
els. In particular, in the case of heterogeneous
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populations or diseases with numerous stages, this
method will facilitate modeling. The problem with this
type of modeling is that in complicated models, the
required data and simulation may be challenging and
the model is limited to the main model?" 2.

Discrete Event Simulation (DES)

DESs are a network of queues and activities with
transition occurring at a discrete point of time®. In a
DES model, the patient’s transition through the model
and it is possible that at any discrete time interval,
the next event occurs after the previous event. Mod-
el analysis is based on the occurrence of the event
at that time, inquiring about the subsequent event,
whereas in Markov models, the events occur at reg-
ular intervals?. These models are better in demon-
strating the disease history and future events. In
these models, the interactions between individuals
or between the individual and the environment are
well defined. Unlike Markov models, these models
are applicable when the disease has numerous risks.
The lengths of cycles are constant in Markov mod-
els, while the interval between events may vary in
these models. Nevertheless, the structure of these
models is very difficult for establishing relationships
and interpretation; furthermore, the calculations for
developing and implementing these models are very
difficult and challenging?" #’.

Methodology in Economic Studies

Economic studies mandate the knowledge of varia-
bles required for simulation. Therefore, selection of
key issues is of great importance. The components of
decision analysis models include perspectives, inter-
ventions, outcome, costs, and discounting, which will
be discussed in the following.

Perspectives
The perspective of a study depends on the objec-
tive which requires a decision. When the costs and
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health effects are integrated, without considering who
bears the costs and who benefits, the perspective will
be of societal type. In this perspective, all costs and
benefits are calculated for all groups of the society.
Although the societal perspective is the most com-
prehensive and preferred approach, there are other
perspectives such as service providers and hospitals,
insurers and payers* 2% 2°, Many studies are based on
the hospital perspective, but mention having taken
societal perspective into account, as well?®,

Cycle Length

Selecting this variable in models depends on the
disease course. The length of the cycle must reflect
the shortest interval in which the patient will manifest
signs and symptoms of the disease, and may vary
from days to a year depending on the acute or chron-
ic nature of the disease. For instance, in viral diseas-
es, the length may be days, while in chronic diseas-
es, the occurrence of events through the course of
the disease takes one year on the average3*-*2,

Interventions

Interventions may be associated with a specific
service, such as a hospital or a clinic, or they may
depend to a population, such as screening or vac-
cination. The interventions may vary based on the
complexity of the service, demand, or settings®.

Health Outcome

Using health outcomes is much more challenging
compared to the costs. One problem is that the re-
sults reported by a study are comparable to only
other studies addressing the same outcome®. In all
cost-effectiveness studies, researchers looking for
the optimal cost-effectiveness and benefits in such
studies usually require clinical outcomes®*. A broad
spectrum of outcomes may be used based on the
type of the disease and its acute or chronic nature,
such as overall survival, quality-adjusted survival,
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progression-free survival, tumor response, adverse
events avoided, QALY, DALY, and YLL* 3

Costs

Costs constitute one of the most important compo-
nents of the cost-effectiveness models. The major
costs calculated include direct medical costs, direct
non-medical costs, patient, and indirect costs*.
Direct costs refer to those directly associated with
spending one or several resources for the purpose of
intervention. These costs include direct medical and
direct non-medical costs. Direct medical costs are
those used for disease management, such as diag-
nosis, treatment, and patient care. Direct nhon-med-
ical costs result from the disease or its treatment,
such as transportation costs?: %,

Costs are calculated based on the currency of the tar-
get country. The calculated costs are usually convert-
ed to US dollars for universality and comparability*.

Discounting

For chronic diseases requiring cost and benefits cal-
culations for periods longer than one year, discount-
ing is necessary. More researchers agree on cost dis-
counting, but there is controversy regarding benefit
discounting* 28. Many studies consider an annual 5%
discount; however, 3%-10% is usually implemented
for the purpose of robustness?®.

Sensitivity Analysis

Sensitivity Analysis is used in decision models to
choose the optimal strategies based on changes in
parameters value in different scenarios. The poten-
tial impact of these changes are investigated in order
to find the cost effective strategies®: *’.

METHODS
The present study is a comprehensive review. We
identified and reviewed articles addressing various

strategies for cervical cancer prevention based on
economic modeling, and compared their findings.
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The studies were searched for in Medline through
Pub Med, Web of Science, Embase and HTA via
Ovid databases.

The major keywords used for search included mode-
ling, decision analysis models, decision tree, Markov
model, Monte-Carlo model, dynamic model, screen-
ing, and cervical cancer.

The variables extracted from the studies included
author’s name, year of publication, country, type of
model, time horizon, perspectives, discount rate, cy-
cle length, type of cost, type of sensitivity analysis
and outcome.

RESULTS

A total of 43 articles published from 1998 to 2017
were reviewed. The countries where the studies had
been conducted included 13 (30.2%) developing and
29 (67.4%) developed countries. One study (2.3%)
was conducted on 179 countries, including devel-
oped and developing nations.

Totally, 25 studies (58.1%) used Markov models, 6
studies (13.9%) used Markov models followed by
Monte-Carlo simulation, 4 studies (9.3%) used dy-
namic models, and 2 studies (4.6%) used MISCAN
simulation. Also, six studies (13.9%) did not specify
the simulation model used.

The discount rate of costs and outcomes was 3% in
23 studies (53.4%). Five studies (11.6%) used 5%
discount rate, and five studies (11.6%) did not dis-
count the costs and outcomes, most of which (four
studies) used Markov models. Only four studies
(9.3%) did not mention discounting and six studies
(13.9%) used various discount rates.

The most common perspective used in the studies
was societal (16 studies, 37.2%). Service provider,
payer, and lack of mentioning the perspective were
found in 13 (30.2%), 3 (6.9%) and 11 (25.5%) stud-
ies, respectively. Table 2 compares the major com-
ponents of different models in the studies.
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DISCUSSION

This study attempts to provide a definition of decision
analysis models and their application in healthcare sys-
tems. Furthermore, we compared the models and their
major components, focusing on those used for prevent-
ing cervical cancer. Our review demonstrates that in all
the economic models studied, the most important com-
ponents include costs, effectiveness, length of the dis-
ease, and perspective. As our findings showed, Markov
models are more commonly used for preventing cervical
cancer, although it appears that dynamic models are be-
ing extensively applied over the recent years. Similarly
in other healthcare fields, Markov models have been
more popular?'. In our review, we observed that the de-
cision tree was not used alone in any of the studies,
and it was usually applied following modeling in the sec-
ond section where scenarios of different strategies are
conducted® 57 ¢, As explained before, the reason why
decision tree is not used alone in studies addressing
cervical cancer prevention may be the natural course of
the disease and its sophistications, alongside the fact
that it is time-dependent' 2. Moreover, DES models
were not used, as HPV is the only risk factor addressed
for occurrence of cervical cancer and other risk factors
were not taken into account; as mentioned above, DES
models are used for addressing multiple risk factors?.
Decision models are more important for chronic diseas-
es which impose greater financial burdens on nations.
In a review on decision models dealing with cervical
cancer, Cantor reported that using these models may
reduce discrepancy and thus there are good reasons
to recommend health policymakers to apply such mod-
els®®. Despite the recommendations of some priority
setting studies regarding the implementation of cost-ef-
fectiveness studies before running healthcare programs
in many countries, there are disparities in the results of
the implemented programs compared to the findings
of such studies®' 2. In a systematic review on Markov
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models used for cervical cancer screening, very few
countries where these studies had been conducted ac-
tually incorporated the findings of these studies in their
screening program®. One reason for this is the estab-
lishment of the program prior to conducting these stud-
ies®. For this reason, the World Health Organization
recommends that novel technologies, if cost-effective,
must be utilized in settings where a screening program
is not already in place®.

Our study has certain limitations. First, our review was
not systematic; therefore, it is possible that some stud-
ies may have remained unidentified. In addition, since
our scope was limited to cervical cancer screening,
the findings cannot be generalized to cases other than
screening.

CONCLUSION

Using decision analysis models in healthcare systems
will save costs and time. It is recommended to encour-
age policymakers to use the findings of these studies for
making decisions and solving health-related challenges.
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