Cancer Risk Analysis of Benzene and Ethyl Benzene in Painters

Bahram Harati¹, Seyed Jameleddin Shahtaheri ²*, Ali Karimi¹, Kamal Azam³, Alireza Ahmadi⁵, Maryam Afzali Rad¹, Ali Harati⁶

ABSTRACT

Background: Several effects of volatile organic compounds (VOCs) have been recognized such as toxic and carcinogenic human health effects. To evaluate cancer risk of benzenes, air samples were taken from the working environment of automobile painters in Tehran following inhalation exposure.

Methods: To perform this study, a cross-sectional study was performed in 2016. Sampling was carried out by active pump sampler using the NIOSH method 1501. A total of 40 samples of BTEX were analyzed by Gas Chromatography-Flame Ionization Detector (GC-FID). Finally, estimated terms of Chronic Daily Intake (CDI) was performed for cancer risk and Exposed Concentration (EC) for non-cancer.

Results: The 4-week average benzene, toluene, ethyl-benzene, and xylene exposure levels in exposed subjects were 0.775 ± 0.12, 1.2 ± 2.08, 45.8 ± 8.5, and 42.5 ± 23.9 ppm, respectively. The results of the study indicated that among all BTEX compounds, toluene had the lowest concentration. The mean cancer risk for workers exposed to benzene and ethyl benzene was estimated at 3.21×10^{-2} and 3.63×10^{-2}, respectively. The non-carcinogenic risk of exposure to BTEX compounds was higher than the reference hazard level of one. Statistical tests showed a significant difference between concentrations of pollutant in the breathing zone of workers according to age and duration of employment ($P<0.001$).

Conclusion: This study suggests that exposed workers exposed workers are influenced the actual cancer and non-cancer risk (exposed to BTEX compounds) compared to those who were not exposed. Exposure to benzene and ethyl benzene would increase the risk of cancer in painters working in automobile manufacturing factories.

Keywords: Cancer risk, Compound BTEX, Automobile manufacturing, Painters
Introduction

Exposure to solvents occurs in a variety of workplaces and community settings, including oil refineries and petrochemical facilities, plastics manufacturing, paint manufacturing processes and building maintenance. The importance of aromatic chemicals produced by anthropogenic activities in the workplace was recognized about 50 years ago. Volatile organic compounds (VOCs) are present in the workplace and urban settings to parts per million (ppm) caused by gasoline evaporative emissions from different vehicles. VOCs such as benzene, toluene, ethyl benzene and xylene (BTEX) are considered as predominant pollutants in areas near the large cities and have adverse effects on both humans and the environment. The BTEX compounds can be emitted during various oil and paint activities processes. BTEX can be produced by industries and are the most prevalent hazardous air pollutants in urban areas. The BTEX compounds are carcinogenic and neurotoxic, classified as precedence pollutants ordered by the Environmental Protection Agency (EPA). Benzene is widely used in the United States and ranks in the top 20 chemicals for production volume. Benzene is considered a carcinogenic substance, according to several international organizations, such as the International Agency of Research on Cancer (IRAC) (1982), American Conference of Governmental Industrial Hygienists (ACGIH) (2003) and EPA (2002). Benzene can also affect the hematopoietic system. Although benzene is known to have toxic effects on the central nervous system (CNS) at high concentrations, chronic exposure to low concentrations of benzene can lead to adverse health effects such as decreased numbers of erythrocytes and leukocytes. Toluene has adverse health effect and can affect the central nervous system. Ethyl benzene and xylene can have neurological effects. Natalie reported that ethyl benzene is a very oto-toxic chemical. More organizations worldwide suffer from a retract of chemicals in need of human health risk assessment. In some instances, several governmental organizations have calculated cancer potency values for a certain chemical. Health risk assessment for exposure to chemical substances is usually performed to evaluate the health damage. For public health purposes, information of the relationship between exposure to chemical substances and their related health risk is essential. The aim of this study was to conduct risk analysis for cancer and non-cancer of benzene, toluene, ethyl benzene, and xylene (BTEX) in an automobile manufacturing.

Methods

This was a cross-sectional study conducted in 2016 in an automobile manufacturing company. The study population consisted of 40 painters aged 25 to 54 years who were exposed over periods of 2 to 16 years. Consent form was completed for all participants before their participation in the research.

Sampling and analysis of BTEX

Sampling and analysis of BTEX compounds in air inhaled were carried out by NIOSH method number of 1501. A total of 40 samples were collected in the workplace. Air was aspirated at a known flow rate through the sampling tubes, containing activated coconut shell charcoal, to collect air samples in the workplace and ambient air. Low volume samplers were used for collecting samples at a flow rate of 100 mL/min. Pumps with stable low flow rates (10 to 200 mL/min) were preferable for long period sampling (up to 8 hours). After collection, cartridges were extracted with CS2 (2 mL). Chemical analyses were performed using VARIAN c-3800 gas chromatography (GC) coupled with FID. The maximum
concentrations of benzene, toluene, ethyl-benzene, and xylene in the working environment were 1.7, 8.7, 62, and 74 ppm, respectively. The period of exposure to BTEX ranged between 1 to 20 years.

Cancer and non-cancer risk calculation

The breathing zone exposures were estimated in terms of Chronic Daily Intake (CDI) (mg/kg/day) for cancer risk assessment using the equations below:

\[
CDI = \frac{(CA \times IR \times ET \times EF \times ED)}{(BW \times AT)}
\]

Cancer risk = CDI \times CSF

CDI (mg/kg/day) = Chronic Daily Intake
CA (mg/m³) = Contaminant Concentration in Air
IR (m³/h) = Inhalation Rate (0.875 m³/h assumed for adult)
ET (h/day) = Exposure Time (8 h/day for workers)
EF (day/years) = Exposure Frequency (350 day/years assumed for workers)
ED (years) = Exposure Duration (30 years for workers)
BW (kg) = Body weight (60.54 kg, average body weight of workers)
AT (day) = Averaging Time (70 years \times 365 for cancer or ED \times 365 for non-cancer)
CSFᵢ (mg/kg/day)⁻¹ = inhalation cancer slope factor

A cancer risk of \(> 10^{-6} \) was considered as carcinogenic effects of concern, a value \(\leq 10^{-6} \) was considered as an acceptable level.

Exposed Concentration (EC) for non-cancer:
Risk assessment for non-cancer risk was expressed by Hazard Quotient (HQ) calculated according to the following equation:

\[
EC = \frac{(CA \times ET \times EF \times ED)}{AT}
\]

HQ = EC / Rfc

Rfc (µg/m³ or ppb) = Represent exposure concentration

HQ > 1 indicates adverse non-carcinogenic effects of concern and a value HQ of ≤1 was considered as an acceptable level.

Statistical analysis

The obtained data were analyzed using the statistical package for social science (SPSS) version 22. The mean concentration of pollutants in personnel and related standard threshold limit value (TLV) recommended by the American Conference of Governmental Industrial Hygienists (ACGIH) were compared using t-test. A p value < 0.05 was considered as statistically significant.

Results

History of workers

Forty pollutants-exposed workers, aged 25 to 54 years (mean 34.22 ± 6.85), who were exposed over periods of 2 to 16 years (mean 6.9 ± 4.13), working 8-10 h/day, in the automobile manufacturing factories in Tehran, Iran were considered for evaluation. The information from workers is summarized in Table 1.

BTEX in breathing air zone

Forty air samples were collected from 20 painters (two samples from each painter). Duration of the time for taking all samples was 120 hours (3 hours per sample). These samples were collected during different working hours due to the different air pollution throughout a working shift. The 4-week average exposure levels of benzene, toluene, ethyl-benzene, and xylene in exposed subjects were 0.775±0.12, 1.2±2.08, 45.8±8.5 and 42.5±23.9 ppm, respectively (Table 2).

Comparing concentrations of BTEX to recommended standard level showed that the concentration of benzene in the breathing zone of painters was significantly higher than TLV-TWA recommended by ACGIH (p<0.05). The concentrations of toluene, ethyl-benzene, and xylene were lower than
Table 1. Demographic data of workers (n=40)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Frequency (percentage)</th>
<th>BMI (mean ±SD)</th>
<th>BMI (range)</th>
<th>Marital status</th>
<th>Smoking status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Maried</td>
<td>Single</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Age group</td>
<td></td>
<td>Married</td>
<td>Single</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>20-29 years</td>
<td>11 (27.5%)</td>
<td>26.01±3.6</td>
<td>9 (22.5%)</td>
<td>2 (5%)</td>
<td>5 (12.5%)</td>
</tr>
<tr>
<td>30-39 years</td>
<td>17 (42.5%)</td>
<td>24.73±3.1</td>
<td>16 (40%)</td>
<td>1 (2.5%)</td>
<td>6 (15%)</td>
</tr>
<tr>
<td>40-49 years</td>
<td>11 (27.5%)</td>
<td>26.91±5.02</td>
<td>11 (27.5%)</td>
<td>0 (0%)</td>
<td>4 (10%)</td>
</tr>
<tr>
<td>Older than 50 years</td>
<td>1 (2.5%)</td>
<td>23.31</td>
<td>1 (2.5%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Experience</td>
<td></td>
<td>Married</td>
<td>Single</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Less than 5 years</td>
<td>18 (45%)</td>
<td>24.89±3.5</td>
<td>15 (37.5%)</td>
<td>3 (7.5%)</td>
<td>9 (22.5%)</td>
</tr>
<tr>
<td>5-10 years</td>
<td>14 (35%)</td>
<td>24.96±3.7</td>
<td>14 (35%)</td>
<td>0 (0%)</td>
<td>5 (12.5%)</td>
</tr>
<tr>
<td>10-15 years</td>
<td>7 (17.5%)</td>
<td>29.05±3.7</td>
<td>7 (17.5%)</td>
<td>0 (0%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>15-20 years</td>
<td>1 (2.5%)</td>
<td>25.06</td>
<td>1 (2.5%)</td>
<td>0 (0%)</td>
<td>1 (2.5%)</td>
</tr>
</tbody>
</table>

Table 2. Exposure levels of BTEX by categories, in workers exposed to BTEX in Tehran, Iran

<table>
<thead>
<tr>
<th>Duration of sampling</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethyl-benzene</th>
<th>Xylene</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean ±SD</td>
<td>Range</td>
<td>Mean ±SD</td>
<td>Range</td>
</tr>
<tr>
<td>Current day levels (ppm)</td>
<td>0.69±0.14</td>
<td>0.54 - 0.83</td>
<td>2.29±3.2</td>
<td>0.4 - 6.08</td>
</tr>
<tr>
<td>Four-week average (ppm)</td>
<td>0.775±0.12</td>
<td>0.54 - 0.86</td>
<td>1.2±2.08</td>
<td>0 - 6.08</td>
</tr>
</tbody>
</table>
the standard level of TLV-TWA recommended by ACGIH. The results demonstrated the statistically significant difference between the concentrations of benzene in the breathing zone of workers and the permitted levels of 0.5 ppm (P=0.004) (Table 3).

Cancer risk and non-cancer assessment

Cancer risk assessment of automobile manufacturing factories painters was determined using the Chronic Daily Intake (CDI) for cancer and Exposed Concentration (EC) for non-cancer. The mean cancer risk for workers exposed to benzene and ethyl benzene was estimated to be 3.21×10^{-3} and 3.63×10^{-2} respectively (Table 4). The CDIs for benzene and ethyl benzene were 0.1176 and 9.450 mg/kg/day, respectively. The ECs for benzene, toluene, ethyl benzene, and xylene were 8.136, 14.86, 653.81 and 606.73 mg/m3, respectively. The cancer risks for benzene and ethyl benzene in painters in automobile manufacturing factories were above the acceptable limit of 10^{-6}. The non-cancer risks of workers’ exposure to BTEX compounds for benzene, toluene, ethyl benzene, and xylene were ratios of 271.23, 3.112, 6538.1 and 768.01, respectively.

Discussion

Occupational exposures occur in manufacturing industries, such as rubber production, shoe manufacturing, and painting, which use aromatic solvents, containing benzene. The distribution of BTEX from automobile manufacturing factories to the workplace mainly depends on the vapor pressure of substances. The result of this study indicated that lower concentration of BTEX attributed to in the breathing zone of workers, toluene concentration detected. The concentration of benzene in breathing zone of painters (0.775 ppm) was higher than the standard level recommended by ACGIH. However,
concentrations of other pollutants in the breathing zone of painters were lower than the standard level. While, other concentration of pollutant in the breathing zone of painters were lower than the standard level. A few studies have indicated that benzene is the fundamental component of volatile organic compounds. According to this study, the cancer risk of benzene exposure in the breathing zone was higher than the acceptable level of 10-6. Risk assessment is determined as characterization of potential harmful health effects of workers’ exposures to different chemical substances. Some studies have been conducted on the assessment risk for cancer. Tunsaringkarn reported that the average lifetime cancer risk of benzene and formaldehyde was higher than the acceptable level of 10-6. Exposure to high concentrations of benzene may have adverse effect for a long-term. Exposure to benzene causes several adverse effects, including decreased numbers of erythrocytes and leukocytes, which is usually found to be the result of aplastic anemia. The International Agency for Research on Cancer (IARC) has reported that exposure to pure benzene or benzene-containing mixtures possibly results in adverse effects on the hematopoietic system. According to this study, cancer risk of ethyl benzene exposures was higher than the acceptable level of 10-6. Nevertheless, Tunsaringkarn reported that cancer risk for exposure to ethyl benzene was in the acceptable range in a gasoline station. The non-carcinogenic risk of exposure to BTEX compounds in the breathing zone was higher than the hazard level of one. This shows that BTEX compounds may possibly have adverse health effects. This study suggests that these workers (exposed to BTEX compounds) are susceptible to actual cancer and non-cancer risk compared to those who are not exposed. The advantages of this study are using rank and prioritizing risks of contaminants in the breathing zone of automobile manufacturing workers. This research demonstrated that, cancer risk analysis can provide valuable information on prevention and control procedures in place. Therefore, in order to control higher exposure to pollutants, alternative methods and management control are recommended.

Acknowledgement
The authors thank the Department of Health Safety Environment (HSE) of automobile manufacturing for supporting this study.

References